DIGITAL AUDIO TAPE

Computer for process control & automation
OSCILLOSCOPES

Unique 3 Terminal Component Tester
1 mV/div. Sensitivity, Z-Modulation
X-Y Operation, X-Y Magnifiers, X-Y Variable Controls
TV Line & TV Frame, Trigger Indicator

DIGITAL LCR METER

For direct measurement of Inductance
Capacitance & Resistance with the highest possible
ranges and Simultaneous display of Tan Delta

VLCRTI is the only instrument in India covering
the Widest ranges of 0.1 pf/µH/m ohm (i.e. 0.0001 ohm.)
to 20,000 µf/2000H/20 M ohm.

VASAVI ELECTRONICS
630, Alkari, Ranigunj,
Secunderabad-500 003
Phone: (0842) 70995
Grams: VELOSCOPE
Telex: 0425-6834 VELIN
The birth of satellite communications .. 12.22
The digital audio tape recorder ... 12.34
The UNIX operating system .. 12.38
The INMOS transputer and OCCAM ... 12.41
Computer Science's holy grail .. 12.48

Projects

BASIC computer .. 12.26
Automatic car aerial .. 12.40
Dimmer for inductive loads ... 12.43
LED logic flasher .. 12.46
Precise motor speed regulator chip 12.48

Information

Electronics News .. 12.18
Telecommunication News ... 12.20
Computer News .. 12.21
New Products ... 12.56
Readers Services ... 12.70
Corrections ... 12.72

Guide lines

Switchboard ... 12.65
Index of advertisers ... 12.72
Info/Data sheets .. 12.73

Selec-29

Thermometer ... 12.51

Front cover

Although the Digital Audio Taping recording system, introduced in Japan earlier this year is facing difficulties, with the combined might of the world's recording producers and composers' and music writers' organizations, it appears that it is here to stay. But, in the absence of prerecorded tapes, the impossibility of recording from CD players, and a relatively high price, it is probable that it will take a long time before it will make its presence felt on the market.
THE BIRTH OF SATELLITE COMMUNICATIONS

Twenty-five years ago worldwide communications entered a new era. Telstar, the world’s first commercial communications satellite, was launched on July 10, 1962, and the first live television signals via satellite were received by British Telecom’s Goonhilly earth station in the early hours of the following morning.

In October 1945, the magazine *Wireless World* published an article by Arthur C. Clarke, today probably better known as the author of *2001: A Space Odyssey*, entitled *Extra-terrestrial relays can rocket stations give worldwide radio coverage?*. Arthur C. Clarke commented in his article: ‘Many may consider the solution proposed in this discussion too far fetched to be taken very seriously.’ Yet his idea was to prove the blue-print for today’s satellite communications network.

He accurately predicted the orbital velocity that a rocket would need to become an artificial satellite, or second moon, circling the world with no expenditure of power. He also predicted that a satellite circling the earth above the equator at a certain height would appear to be stationary to the earth and that three such satellites could give global radio coverage.

He further predicted that development of rocket technology, started by the Germans during the second world war, would soon make it possible to place a satellite in orbit.

Today, reality has caught up with science fiction as British Telecom International-BTI handles more than three million minutes of telephone calls, television pictures, data, facsimile, and telex, every day through Goonhilly and its other international links.

About 90 per cent of the world’s telephones—some 600 million of them—in 173 countries can be dialled direct from the UK. Telephone services are provided to more than 200 countries and each day more than 600,000 calls are connected from the UK to the other countries.

Fig. 1. The Olympus satellite is one of the largest and most powerful in the world. Photograph courtesy of British Aerospace.

The early Telstar demonstrations and tests

In the Spring of 1961 it was jointly announced in the United Kingdom, the USA and France that the US National Aeronautics and Space Administration (NASA), the French Centre for Telecommunications Studies and British Telecom, as its predecessor Post Office Telecommunications, would cooperate in a programme for transatlantic testing of communications satellites.

At the same time it was announced that satellite earth stations would be built in England and France ‘for the reception and transmission of telephone, telegraph and television signals across the Atlantic using satellites to be launched by NASA during 1962 and 1963.’ Work began shortly afterwards to build the UK’s first satellite station at Goonhilly Downs in Cornwall. The site was chosen because it was as far west as possible to obtain the maximum period of visibility to the United States via the satellite, to be remote from sources of electrical interference, and to provide an unobstructed view to the horizon for the longest possible contact with the satellite.

In less than a year from gaining access to the site the station was ready. A massive, steerable dish antenna, weighing 870 tonnes with a 25-metre dish had been built. All of the equipment on the station was of British design and manufacture, with the exception of one American transmitting klystron valve.

The British design was the odd-man-out among the three earth stations to be used for the tests. Both the American station at Andover, Maine, and the French station at Pleumeur-Bodou in Brittany were equipped with horn antennas housed in radomes. The British station had cost around £200,000 to complete, about a quarter of the cost of the American and the French stations.

In early July 1962 it was announced that Telstar would be launched from Cape Canaveral on either July 10 or 11.

The successful launch took place at 8.35 GMT on Tuesday, July 10, and the desired orbit was achieved. With Telstar circling the earth at heights varying between 590 and 3300 miles, it was possible to achieve three or four periods during each 24 hours when mutual visibility between Goonhilly and Andover lasted for 30 to 40 minutes.

During these periods the antenna at Goonhilly had to be accurately manoeuvred to follow the satellite from the moment it rose above the horizon until it again disappeared from view. The signal transmitted from the antenna to the satellite was con-
centrated into a narrow beam, one-fifth of a degree in width, so absolute precision was necessary. To maintain this accuracy in high wind meant that the antenna had to be massive and sturdy. In order to move the antenna so accurately it was equipped with electric motors of some 100 horse power. However, the engineering design resulted in such good balance and smooth movement of the antenna that normally less than two horse power was required under reasonable weather conditions.

The primary purpose of the Telstar satellite tests was to acquire data on which to base the future design of satellite systems for commercial operations. However, during the period from July 10 to July 27 a number of demonstrations were carried out which illustrated the potentialities of satellite systems for world-wide telecommunications.

In the early hours of July 11 the first usable orbits were the sixth and seventh, and the first attempt at television reception was made. Reception was decidedly poor. Some experts were quick to blame Goonhilly’s unique antenna design, and The Times described the experiment as "an almost total failure". Some experts said the antenna was too heavy and cumbersome to accurately track the satellite, others blamed the driving mechanism. The problem proved to be that one component had been fitted the wrong way round and it was a twenty-minute job to correct it. The effect of the incorrect fitting had been to reverse the direction of the wave polarisation of the antenna, relative to that of the satellite, introducing a serious weakening of the strength of the signals received.

The problem arose because of an ambiguity in the accepted definition of the sense of rotation of radio waves; a difficulty which had been encountered both in the USA and the UK in the period just before the tests.

With the correction made, excellent pictures were received on orbit 18 during the evening of July 11, and during orbit 18 the first live television transmission between Europe and the USA was made from Goonhilly to Andover. The pictures and sound received at Andover were reported to be of excellent quality and were broadcast as received throughout the USA.

On July 12 the first two-way transatlantic telephony tests were made, showing that good-quality, stable telephone circuits with low noise levels had been achieved. These tests were to be followed two days later by the first transatlantic telephone call and photo-telegaphy (facsimile) transmission via satellite.

On July 14 during orbit 34, the director general of the Post Office, Sir Ronald Green, spoke from his home in London to the president of American Telephone and Telegraph Co (AT&T), Mr. Eugene McNeeley, in New York. Simultaneously, one pair of channels was used to send facsimile pictures between London and New York.

On July 15 tests to assess the ability of a communications satellite to carry large numbers of telephone circuits were carried out during orbit 43. These demonstrated that at least 500 first-grade international circuits should be possible by satellite.

The first transmissions of colour television signals by satellite were made from Goonhilly during orbits 60 and 61 on July 16. With the co-operation of the BBC’s research and designs department, who provided a colour slide scanner and monitor equipment, the signals, on 525-line NTSC standards, comprised captions, test cards and still pictures to assess colour quality. The transmissions were initially made from Goonhilly to the satellite and back to Goonhilly but were also received in Andover. Andover reported: "Colour—good; picture quality—excellent".

During orbit 87 on July 19 satellite communications were opened up to the press. Twenty-four calls were made by the British press from Fleet Building in London to the American press in New York. On July 33 during orbit 135 an 18-minute long programme from the European Broadcasting Union was transmitted from Goonhilly to Andover. The programme consisted of scenes from many European countries and was transmitted by the Eurovision link to Goonhilly from Goonhilly to the satellite, and received at Andover and broadcast throughout the USA.
During orbit 151 on July 26, the Telstar link between Goonhilly and Andover was used to provide telephone circuits for the US Information Agency involving conversations between "notable persons" in 20 pairs of cities in the USA and Europe for the Agency's "People-to-People" programme. The circuits were reported as excellent.

The Telstar tests confirmed that communications satellites could provide high-quality, stable circuits for television and multi-channel telephony. The performance of Goonhilly earth station was reported as excellent in every respect, and the equipment, almost all of which was of a unique new design, had worked well. In fact, Goonhilly's antenna design was to prove, as had Arthur C. Clarke's idea, to be the blueprint for the future.

A brief history of Goonhilly satellite earth station

The choice of Goonhilly Downs, on the Lizard Peninsula in Cornwall, as the site of the United Kingdom's first satellite earth station, was made for exactly the same reasons that Guglielmo Marconi chose the Lizard for his pioneering work in maritime and international "wireless" telegraphy. The Lizard offers an uninterrupted view across the Atlantic and little electrical interference.

The first transatlantic wireless message was sent from the Lizard on December 12, 1901. Three faint but discernible "dots" of the Morse letter "S" were sent from Marconi's transmitter at Poldhu and received by him in Newfoundland, Canada. A year later Poldhu sent a signal to the vessel Philadelphia more than 2000 miles away in the ocean. Long-distance telecommunications had been born.

Sixty years later the advance of technology had made satellite communications, first proposed by the author and scientist Arthur C. Clarke in 1945, a realistic possibility. The United Kingdom, the USA and France announced in 1961 that they would co-operate in a programme for the transatlantic testing of communications satellites. The search for a suitable site in the UK for the station that would receive the signals from the satellites, ended in the Lizard, on the flat expanse of Goonhilly Downs.

The Lizard offered an unimpeded view of the Atlantic horizon, giving the longest possible contact with the low-orbiting satellites then being used. It suffered from little electrical and radio interference; was well placed to connect with inland communications, power supplies and transport links; and had a climate with moderate rainfall, little seasonal variation in temperature and only occasional snow.

Equally important was the geology of the area. The serpentine bedrock reaching a thousand feet deep would give vital support to the massive weight of the antennas. Within a year of obtaining possession of the site, the first antenna, the control room and its associated equipment were installed and ready for the first tests which would use the Telstar satellite, to be launched by the US National Aeronautics and Space Administration (NASA) on July 10, 1962.

These tests confirmed that satellites could have a commercial future in international communications. During a period of 16 days several world-firsts went into the record books—the first live television transmission between Europe and the USA, and the first telephone calls, facsimile transmission and transmission of colour television by satellite.

Because of the low orbit of Telstar—between 900 and 3500 miles above earth—the satellite was only usable for three or four 30- to 40-minute periods in each 24 hours. As the satellite raced across the sky from horizon to horizon, the antenna had to be nimble enough to follow the satellite to one-fifth of a degree's accuracy during each of these brief visits.

Aerial 1 at Goonhilly was a unique design—an 870-tonne "dish" antenna, compared to the French and American horn antennas enclosed in radomes. Some initial problems during the first usable orbits of Telstar caused experts to blame the design of the British antenna, but a small problem with a component which had been fitted faultily proved to be a twenty-minute job to correct and the antenna then went on to establish its world-firsts.

Goonhilly Station had cost around £800,000 to complete, about a quarter of the costs of the American and French stations, and it was the unique design of the British dish antenna which was to go on to become the norm for satellite communications throughout the world. The dish design is now used generally by nearly 700 satellite stations in more than 150 countries.

Following the successful tests with Telstar an international satellite organisation was set up in August 1964—INTELSAT. Interim agreements were signed by 11 member nations—the USA, UK, Canada, Denmark, France, Italy, Japan, the Netherlands, Spain, the Vatican City State and Australia. Today INTELSAT is owned by more than 100 member countries. INTELSAT launched its first satellite into orbit in April 1965. The satellite, INTELSAT I, known as Early Bird, was a
high-orbiting satellite in 'geostationary orbit'. Arthur C Clarke had proposed in his 1945 paper that satellites, circling the earth above the equator at a certain height, would appear to be stationary to the earth's surface—their period of orbit would exactly match that of the earth's natural rotation. That distance was 22,300 miles above the equator. After INTELSAT I's successful launch to this height, commercial service opened in June 1965.

Arthur C. Clarke had also proposed that three satellites in geostationary orbit could give world-wide radio coverage. A second satellite—INTELSAT II—was launched in December 1966, and at the same time, Aerial 1 at Goonhilly, which now no longer needed to track low-orbiting satellites across the sky, had an extra reflecting surface added, pushing its weight up to 1100 tonnes.

Satellite communications had now truly entered commercial operation. As the demand for transatlantic TV and telephone transmission grew, so did Goonhilly with the addition of Aerial 2 in 1968. By 1969 three geostationary satellites were in orbit, fulfilling Arthur C. Clarke's prophesy of global communications. INTELSAT III was positioned above the Indian Ocean and demand for satellite communications with the Far East grew. To meet this need Aerial 3 was brought into service in 1972.

Aerial 4 was added in 1975, to meet an ever-increasing demand for communications across the Atlantic. This was also one of the first antennas in the world to use the 11/14 GHz frequency as soon as it became available for business satellite communications.

Demand for satellite communications grew by 20 per cent a year during the 1970s and early 1980s. Further satellites were put into orbit and in October 1978 a second earth station was brought into service by British Telecom at Madley in Herefordshire.

Demand for satellite services also grew during this period and in 1983 Aerial 5 at Goonhilly was completed to provide satellite services to ships at sea. At the same time Aerial 6 was being built to provide further capacity on the busy transatlantic route. Aerial 6 is Goonhilly's largest dish with a diameter of 32m. It was also the first 'dual-frequency' antenna, able to both transmit and receive on two frequencies simultaneously—doubling potential capacity. It entered service in September 1986.

While aerial 6 was being built, Aerial 7 was also being brought into service to provide leased TV services to North America. With continuing growth in demand for satellite communications, British Telecom announced plans in August 1983 to built a third earth station in London's Docklands, primarily for satellite TV distribution and specialised business services. The London Teleport, in North Woolwich, opened for operation in February the next year—less than six months after site clearance began.

Aerial 7 at Goonhilly, initially used for TV circuits, is now being used for the trial of Skyphone—a telephone service to aircraft in flight—which is due to start by the end of this year.

Meanwhile Aerials 8, 9 and 10 have been built. These are small-dish antennas below 14m in diameter. They are used for research and development, and to provide monitoring and control facilities on the more than 130 satellites currently in use. Today, development at Goonhilly continues. Aerial 8, the biggest antenna, has been equipped to operate to the latest development in satellite communications—Time Division Multiple Access/Digital Speech Interpolation (TDMA/DSI). TDMA/DSI means that signals from the station are grouped and sent by time rather than frequency so that, on the principle that during the average telephone conversation either party is only speaking for one third of the time, other groups of signals can be sent along the same channels during the lapses of conversation.

While British Telecom's earth station at Goonhilly provides vital links for today and tomorrow, it has not forgotten its past—a past that goes back far beyond Marconi's early experiments.

The Lizard Peninsula is designated as an Area of Outstanding Natural Beauty and Goonhilly Downs was Cornwall's first National Nature Reserve. In developing the earth station, British Telecom spent £200,000 landscaping the scheme to form natural-looking mounds, or boulders, inside and outside the station's boundaries. Local heathers, gorse and willow were planted in the station, in keeping with the natural character of the Downs. With little intrusion from the public, amidst the silent giants of Goonhilly's antennas, the local flora and fauna have been able to flourish, making Goonhilly not only a pioneer in high-technology but also a botanist's paradise.
At the heart of this versatile and simple to build computer for process control and automation applications is Intel's Type 8052AH-BASIC microcontroller.

As already noted in reference (1), the Type 8052AH-BASIC is a single-chip microcontroller tailored to data manipulation in intelligent instrumentation, measurement and control systems. Not surprisingly, therefore, the 8052AH-BASIC features an extensive and powerful set of input/output and timekeeping functions. By virtue of its compactness and ease of programming, the BASIC computer described herein is suitable for a wide range of domestic as well as industrial applications. Although not every programmer will applaud the use of BASIC, it can be argued that this is still the most widely known, and often first apprehended, programming language. Moreover, the BASIC interpreter of the 8052AH-BASIC is an advanced version offering instructions like DO-WHILE and DO-UNTIL, which enable better structuring of programs than the GOTO statement. Also, variables can be stored and retrieved by means of instructions PUSH and POP. The BASIC interpreter is reasonably fast as compared with competitive 8 and 16 bit systems. In conclusion, the 8052AH-BASIC couples the power and versatility of the 8081 to the qualities of a well-written, reasonably fast, BASIC interpreter. The computer described is suitable for experimental as well as stand-alone applications. Programs can be written, tested, and debugged by anyone with a reasonable command of BASIC. The microcontroller used is not cheap, probably because of its specialist nature, and the fact that it has hitherto found applications mainly in industrial control systems. None the less, the cost of the 8052AH-BASIC is justifiable considering its impressive potential.

To aid programmers in writing efficient programs, Intel supplies the indispensable *MCS BASIC-82 USERS MANUAL*, which carries reference number 570010-903. It is important to note that ready-made programs for the BASIC computer are not available. The proposed system is intended primarily for applications where the BASIC programs are not an end in themselves, but where the hardware-software link is readily accessible to enable developing and testing computer controlled systems of a wide variety. Once a program is debugged and known to function satisfactorily, the computer can act as a reliable stand-alone controller.

Features

The computer described features an on-board EPROM programmer, which is controlled direct by the 8052AH-BASIC CPU. This means that the processor can store its own programs in EPROM after debugging and testing. Once it is EPROM resident, the BASIC program is available for direct...
Fig. 2 Circuit diagram of the BASIC computer.
and autonomous execution by the processor. The EPROM contents form the token program listing rather than machine code obtained by a compiling process. The programming of EPROMs on the board is straightforward and fully supported by BASIC instructions. A single EPROM can hold a number of programs, which can even call each other when necessary. It should be noted that the BASIC computer has no keyboard and screen of itself. These communication functions are taken over by an external console (terminal), connected to the computer's bidirectional, serial I/O port.

As to the hardware configuration of the proposed BASIC computer, this is characterized by a high degree of flexibility, allowing the user to readily add, say, a UART (universal asynchronous receiver/transmitter), an ACIA (asynchronous communications interface adapter), a number of PIA's (peripheral interface adapter), or other peripheral circuitry such as an alphanumeric display, a sound generator, or a keyboard encoder. The pinning of the 8052AH-BASIC is given in Fig. 1.

The 8052AH-BASIC has a number of powerful timing instructions which, in conjunction with the interrupt statements, special registers, and instruction counters, afford excellent control of time-critical I/O applications. A real time clock is also available in the form of function TIME, which offers a resolution of about 5 ms.

The Type 8052AH-BASIC is an 8-bit microcontroller, which means that it combines the functions of central processing unit (CPU), and peripheral circuits (I/O; DMA). The chip has an accumulator A, a register B, a status register PSW (program status word), an 8-bit stack pointer, a 16 or 2x6 bit data pointer DPTIR, 4-bit ports for use as an I/O and/or address, data, or command bus, a double serial communication register SBUF, 3 register pairs TH0-TL0, TH1-TL1, and TH3-TL2, which together form the 3 16-bit timers T0, T1, and T2, an intermediate storage register pair RCAP2H-RCAP2L for a number of functions of timer 2, and, finally, an array of registers for various command functions: IP (interrupt priority), IE (interrupt enable), TMOD, TM0N & TCON for the timers, SCON (serial control) and PCON (power control).

Circuit description

The circuit diagram of the BASIC computer is given in Fig. 2. The 8 Kbyte BASIC interpreter is internal to the microcontroller. IC1, EPROM IC0, holds the user's BASIC programs. The minimum amount of RAM for the 8052AH-BASIC is 1 Kbyte starting at address 0000. In the present application, the RAM area is either 8 Kbyte (0000-1FFF) or 16 Kbyte (0000-3FFF), depending on whether 1 or 2 RAMs Type 8264 are fitted (IC4, IC6). Write and read operations are controlled directly by signals WR and RD respectively.

The memory structure of the 8052AH-BASIC is not in accordance with von Neumann's model; the program memory is distinct from the data memory, which explains the logic combination of signal PSEN (program store enable) control of read operations in an external program memory) with RD in gate N7 to select the ROM memory area (2784 = 8 Kbyte from 0000 to 1FFF; 2784 = 16 Kbyte from 0000 to 3FFF). This does not exhaust all the possible memory configurations for the 8052AH-BASIC, but form a practical as well as efficient combination—see Fig. 3. In the EPROM programming mode, the microcontroller addresses EPROMs in the memory area starting at address 8000.

Decoder IC3 divides the memory area in blocks of 8 Kbyte. AND gate IC6 makes it possible to combine 2 block select signals when the EPROM used is a Type 27128. Normally, output latch IC2 demultiplexes the data and lower address bytes with the aid of signal ALE (address latch enable). In the EPROM programming mode, however, the 16 address bytes are kept latched much longer than during normal bus cycles. This also goes for the MS address byte and the datadwidth—the normal duration of a programming cycle is of the order of 60 ms. The software has no direct control over the length of the ALE pulse, and this is therefore, inhibited with the aid of N4, N5 and the logic low level on CPU port P13.

When port 0 is used in the I/O mode, pull-up resistors are required on the open drain outputs. Normally, this port functions as the data and address bus, but operates as an I/O port in the EPROM programming mode.

The TTL levels at the serial output, P3.1, of the microcontroller are converted into the corresponding positive and negative levels for the terminal. Rectifier D1, D2, C1, is connected to the terminal's TXD line to provide the negative supply for TXD driver T2. Components D1 and D2 can be omitted, and C1 replaced by a wire link, when the terminal accepts and sends pulses with TTL levels. The connections on the serial I/O connector, K1, are given in the circuit diagram.

Table 1 shows the pin assignment on connector K1, which carries the 8 lines of peripheral port P1, interrupt inputs INT0 and INT1, and lines T0 and T1, which form the external inputs of the respective timers. Line pairs WR and RD, RXD and TXD, INT0 and INT1, and T0 and T1 together form port P3 of the 8052AH-BASIC. Apart from their normal use as I/O lines, the lines on port P1 may be used for special purposes. For example, P1.0 and P1.1 can provide trigger signals as well as clock pulses for timer T2. This is a standard function of the 8052, and not a particular feature of the BASIC interpreter. Lines P1.3, P1.4 and P1.5 are used for programming the majority of currently available EPROM and EEPROMS Types 2764 and 27128. Output P1.6 is connected to input INT0 for ready implementation of a DMA (direct memory access) mechanism. Output P1.7 can act as a direct serial channel for driving, say, a printer, controlled with the aid of commands LIST* and PRINT*. There are more BASIC instructions for port 1: PWM, for example, offers control of the pulse width on output P1.2.

![Memory structure of the 8052AH-BASIC](image)

Table 1 Pinning of connectors K1 and K2.
while instruction PORTl enables direct read/write access.

The signal assignment on connector K1 is shown in Table 1. This connector carries lines AD0...AD7, A0..A15, and the command bus, and so enables ready connection of peripheral extension, or DMA circuitry. It is possible to halt the processor in the idle mode, and so arrange for an external processor or microcontroller to temporarily gain access to the memory in the BASIC computer. The idle mode is initiated with the aid of the corresponding BASIC statement, and can be used for switching the microcontroller to the non-interactive state when no action on its part is required.

The clock oscillator is internal to the 8082AH-BASIC and merely requires a quartz crystal and 2 capacitors. The indicated crystal frequency of 11.092 MHz is required to ensure the correct timing for the serial channel, the real-time clock, and the EPROM programming pulses. When it is intended to use, say, a 12 MHz crystal, the processor should be informed of this by declaring XTAL=12000000. It should be noted that any oscillator frequency other than 11.092 MHz may result in reduced accuracy of the counter operations. The computer is reset and initialized on power up either automatically (Reset) or manually (Reset). Input EA (external address) is made permanently high because the BASIC interpreter is an internal memory area.

Programming EPROMs

The (E)EPROM programming facility of the present BASIC computer is, without doubt, one of its most attractive features. It is important to note that the computer is not just an EPROM programmer, but a data handling and storage system that can be customized as required for the application in question. While communicating with the user via the terminal, the 8082AH-BASIC can store, edit, debug, and test BASIC (sub)routines in EPROM to facilitate calling these as “tools” at any time. Before programming is effected, the microsoftware in the 8082AH-BASIC takes care of all the tokenizing of the object program to ensure compact storage. Depending on the programming mode, certain parameters are stored along with the program, and are instantly available when this is loaded and run. These program parameters include the baud rate, variable MTP, an execute flag, and a flag that enables skipping the memory initialization routine at power-on—this is particularly useful when the RAM is battery powered.

Finally, it is possible to use BASIC for loading an EPROM with an assembler program that is executed automatically after a RESET pulse.

With reference to the circuit diagram, when line P1.5 goes low, transistors T9, T10, and T11 ensure that the programming voltage reaches the Vpp terminal of the EPROM. The programming voltages for a number of EPROMs are listed in Table 2. The microcontroller places the LS address byte onto lines AD0...AD7, then disables ALE by making P1.3 logic low. The address byte remains latched in I2C during the remainder of the programming cycle. The MS address byte is placed onto lines A8..A15, and the data byte onto lines D0...D7 of the EPROM to be programmed. Then, output P1.4 is made logic low, and the byte is programmed in the EPROM because PGM goes low while Vpp is applied. Instructions PROG and EPROM select a duration of the programming cycle of 50 and 1 ms, respectively. PROG uses the intelligent programming algorithm, and may require raising the EPROM supply voltage from 5 to 6 V, which is supported by the proposed circuit. Details on the intelligent programming algorithm can be found in reference 1. In all cases, the duration of the PGM pulse is determined by the clock frequency of the microcontroller, and operator XTA should be defined as discussed previously. Switch S3 enables blocking the 3 programming signals. This is done for reasons of security because port P1 can be used for purposes other than programming EPROMs.

Table 2 Programming voltages for a number of EPROM types that can be loaded by the BASIC computer.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>memory organization</th>
<th>Vpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD</td>
<td>AM2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>AM2764A</td>
<td>6K x 8</td>
<td>12.8 V</td>
</tr>
<tr>
<td></td>
<td>AM27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>AM27128A</td>
<td>16K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>M39M2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>M39M2764A</td>
<td>6K x 8</td>
<td>12.8 V</td>
</tr>
<tr>
<td></td>
<td>M39M27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>M39M27128A</td>
<td>16K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td>Hitachi</td>
<td>HN462764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>HN462764A</td>
<td>6K x 8</td>
<td>12.8 V</td>
</tr>
<tr>
<td></td>
<td>HN4627128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>HN4627128A</td>
<td>16K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td>Intel</td>
<td>2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>2764A</td>
<td>6K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>2764B</td>
<td>8K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td></td>
<td>P2764</td>
<td>8K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td></td>
<td>P2764A</td>
<td>8K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td></td>
<td>P27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>P27128A</td>
<td>16K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>M5L2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>M5L27128</td>
<td>16K x 8</td>
<td>12 V</td>
</tr>
<tr>
<td>National</td>
<td>NM2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>NM27128</td>
<td>16K x 8</td>
<td>12.5 V</td>
</tr>
<tr>
<td>NEC</td>
<td>mPD2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>mPD2764A</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>mPD2764B</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>mPD2764C</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>mPD27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>mPD27128A</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>Rockwell</td>
<td>R8764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>R8764A</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>SEEQ</td>
<td>2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>SGS/AT&T</td>
<td>M2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>Texas</td>
<td>Instruments</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>Instruments</td>
<td>TMS2764</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>TMS27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td>Thomson-</td>
<td>CSF</td>
<td>ET2764</td>
<td>21 V</td>
</tr>
<tr>
<td>OSF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toshiba</td>
<td>TW2764</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>TW2764A</td>
<td>8K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>TW27128</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
<tr>
<td></td>
<td>TW27128A</td>
<td>16K x 8</td>
<td>21 V</td>
</tr>
</tbody>
</table>

The type indications as given may be followed by an access time specification.
The practical use and operation of the EPROM programming facility is extremely straightforward. All that is required is to fit an EPROM in the socket for ICs, apply the correct programming voltage, switch S1 to PROG EN, load the BASIC file in RAM, and issue command PROG. The other programming commands

(F)PROG1...(F)PROG6 enable storing auxiliary program information, including the baud rate indicator, and the autobase flag. The available options are described in the previously mentioned programming manual from Intel.

Construction

It should be reiterated that the computer described is intended mainly as an aid in developing software and hardware for automated processes and stand-alone, intelligent, controllers or data loggers, where timekeeping is an essential requirement.

The printed circuit board for the BASIC computer is double-sided and through-plated. The component mounting plan is given in Fig. 4.

It is recommended to fit good quality sockets for all ICs. The socket for EPROM ICs can be a type with turned pins, although a ZIF (zero insertion force) socket mounted as shown in the photograph of the prototype is probably the best solution. Be sure to purchase a microcontroller Type 8002AH-BASIC V1.1. Connectors K1 and K2 are intended for extensions, and need not be fitted as yet. Initially, a single RAM, IC1, is sufficient, since it offers a memory area of about 7 Kbyte for BASIC programs. Resistors R1, ... R6 incl. form an 8-way SIF network, but it is also possible to use 8 ordinary resistors, mounted vertically and connected by a short length of wire connected to +5 V as shown in Fig. 5. The function of the LEDs, D3 and D6, is evident from the circuit diagram. The supply and programming voltage are applied to the circuit via soldering pins and mating sockets, insulated with the aid of heat shrink sleeving. Do not confuse the VCC and VPP connections.

The PROG EN switch, S1, and the EPROM selector, S2, each may be replaced by 3 pins and a mating jumper if it is not intended to frequently program EPROMs, or change between a 2764 and a 27155.

EPROM ICs is not required to make the circuit function. It is not fitted until it can be pro-

Fig. 4 Component mounting plan for the BASIC computer. The circuit board is available ready-made through the Readers Services.
grammed with BASIC modules, and only when the computer is
turned off.

The power supply for the BASIC computer can be a
simple type with regulated outputs for 5 V (500 mA), and the
programming voltage(s).

Initially, the CPU and the
memory chips are not fitted
while the completed board is
fed with Vcc and Vpp. Consult
the circuit diagram and care-
fully check the presence of
the supply voltage at all the relevant
points. Make sure that there is
no short circuit around pin 28 of
ICs, since the programming
voltage is carried nearby.

Switch off the power, carefully
fit the CPU and the RAM(s) with
the correct orientation, and
switch the power on again.

Communication: the terminal

The serial data format for the
BASIC computer is:

8 data bits, no parity, 1 stop bit.

Most terminals, consoles, or ter-

tinal emulation programs for

computers can support this

format.

The 3-wire connection between
the BASIC computer and the
terminal is shown in Fig. 6. At
the terminal side, it may be
necessary to hard wire a
number of RS232 handshaking
lines—consult the relevant
documentation. A solution that
works in most cases is to con-
nect the following pins in the
25-way RS232 connector:

4—5—8 and
8—20 (sometimes 6—20—22).

Where — denotes the con-
nection.

The BASIC computer has an
internal baud rate timing routine.
Press reset, wait a second or so,
and press the space bar on the
terminal. The message

*MCS-51(tm) BASIC VI.1 READY

is displayed on the terminal
screen, and the BASIC com-
puter is ready to accept
commands.

After reset is pressed, the
CPU initializes its internal RAM,
and a number of pointers and
registers. It then tests, ini-
tializes, and determines the
size of the external memory
area (IC1 and IC0). Next, the
memory size is stored with the
aid of operator MTOP (memory
top), operator XTAL is defined
(default: 11059200), and, finally,
the CPU reads the data at ad-

Fig. 5 Showing the use of 8 ordinary resistors instead of a SIL
network.

Fig. 6 The 3-wire connection between the BASIC computer and the
terminal.

11059200 16 244 52

The system prompt > is
displayed to indicate that the
computer is ready to accept
commands, which are not ex-
ecuted until <CR> is re-
ceived. Actually, the 8652AH-
BASIC starts tokenizing and
storing the BASIC commands
after receiving a carriage return
(0Dh). Depending on the
length of the line, and the com-
plexity of the command(s), this
takes some time, and new
characters must not be sent un-
th the CPU responds with the
prompt, indicating completion
of the storage process.

The BASIC computer is prob-
ably best programmed and
controlled with the aid of a per-
sonal micro sporting an RS232
port. As to software, a terminal
emulation or communication
program in conjunction with a
wordprocessor enables effi-
cient editing and downloading
of BASIC files. A general flowchart of a serial I/O
routine to support the above

Fig. 7 The sending computer
must wait for the > prompt
from the BASIC computer
before sending a new line of
commands.
handshaking procedure is shown in Fig. 7. Table 4 is a hex dump of a simple filehandler for IBM PCs and compatibles. The program is called SENDBASH.COM, and was written by H. Peters. It loads (ASCII) BASIC files from disk and sends these to the BASIC compiled on serial port COM1, in accordance with the previously mentioned prompt-based handshaking arrangement.

The program is loaded and written onto disk with the aid of DEBUG, which can be found on the DOS disk (use version 3.1 or later). Format a new disk, and copy DEBUCOM onto it. Select the relevant drive, e.g. E:

Follow this instruction if you are unfamiliar with the operation of DEBUG:

```
DEBUG<CR>
```

Fill a 256 byte block with nulls:

```
F 0000 01FF 00<CR>
```

Name the program:

```
NSENDBASH.COM<CR>
```

Ready for entering the 256 bytes:

```
E 100<CR>
```

Enter the bytes (not the addresses) in Table 4, starting with B4. The first 2-byte address on each line is irrelevant in this case. Use the hyphen for corrections, and the space bar to proceed to the next byte. Type <CR> when the block is complete, and check the screen against the data in Table 4. If necessary, consult the chapter on DEBUG in your DOS manual.

Call up the block pointers:

```
RCl<CR>
```

and type

```
0001<CR>
```

after the colon. Do the same with

```
REX<CR>
```

and again

```
0002<CR>
```

Write the COM file to disk:

```
S:<CR>
```

Table 3

<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>STATEMENTS</th>
<th>OPERATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td>BALD</td>
<td>ON TIME</td>
</tr>
<tr>
<td>CALL</td>
<td>PRINT</td>
<td>DRY</td>
</tr>
<tr>
<td>LIST</td>
<td>CLEAR</td>
<td>PRG</td>
</tr>
<tr>
<td>LIST#</td>
<td>CLEAR(S)</td>
<td>PRG(V11)</td>
</tr>
<tr>
<td>CLOCK(T)</td>
<td>PTZ</td>
<td></td>
</tr>
<tr>
<td>NTUR</td>
<td>PRINT</td>
<td></td>
</tr>
<tr>
<td>NULL</td>
<td>READ</td>
<td>PHV</td>
</tr>
<tr>
<td>RAM</td>
<td>RESTORE</td>
<td>PHV</td>
</tr>
<tr>
<td>PGM</td>
<td>DM</td>
<td>PHV</td>
</tr>
<tr>
<td>POX</td>
<td>DO-WHILE</td>
<td>PHV</td>
</tr>
<tr>
<td>PRG1</td>
<td>DO-UNTIL</td>
<td>PHV</td>
</tr>
<tr>
<td>PRG2</td>
<td>END</td>
<td>PHV</td>
</tr>
<tr>
<td>PRG3</td>
<td>PRINT</td>
<td>PHV</td>
</tr>
<tr>
<td>PRG4</td>
<td>RETURN</td>
<td>SET1</td>
</tr>
<tr>
<td>PRG5</td>
<td>GOTO</td>
<td>STOP</td>
</tr>
<tr>
<td>PRG6</td>
<td>ON-GOTO</td>
<td>STRING</td>
</tr>
<tr>
<td>PRG7</td>
<td>ON-GOSUB</td>
<td>STRING</td>
</tr>
<tr>
<td>PRG8</td>
<td>IF-ELSEC</td>
<td>CSTR</td>
</tr>
<tr>
<td>PRG9</td>
<td>INPUT</td>
<td>LDR(V11)</td>
</tr>
<tr>
<td>PRG10</td>
<td>LET</td>
<td>STH(V11)</td>
</tr>
<tr>
<td>PRG11</td>
<td>ERR</td>
<td>TWIN</td>
</tr>
<tr>
<td>PRG12</td>
<td>ONEXIT</td>
<td>HREM(V11)</td>
</tr>
<tr>
<td>PRG13</td>
<td>ONEXIT</td>
<td>CRY</td>
</tr>
</tbody>
</table>

Table 3 Overview of the instructions supported by the 8052AH-BASIC.

The PC filehandler is now available on disk, and can be called with command SENDBASH. Test the program; the screen is cleared, and the text ENTER FILENAME: is displayed. Type <CR> to return to the DOS command prompt.

Table 4

<table>
<thead>
<tr>
<th>A:DEBUG SENDBASH.COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:DEBUG SENDBASH.COM</td>
</tr>
<tr>
<td>1E49:0000 B4 00 0B 02 CD 10 0C CB 0F 05 10 0E 0E 0B 0D 03</td>
</tr>
<tr>
<td>1E48:0111 53 08 00 7A 26 E9 94 00 5B 0A 07 03 53 2C 1A</td>
</tr>
<tr>
<td>1E48:0120 74 04 3C 0A 74 16 84 01 BA 00 00 CD 14 04 02 0B</td>
</tr>
<tr>
<td>1E48:0130 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0140 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0150 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0160 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0170 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0180 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:0190 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01A0 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01B0 00 00 CD 14 BA 02 0A 0D CD 01 BA 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01C0 46 09 4C 06 45 01 4D 45 4A 20 24 1E 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>1E48:01F0 74 09 0B 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>

Table 4 Hexdump of SENDBASH.COM, the filehandler for PCs and compatibles.

A close look at the component side of the populated board (prototype version).
SEND BASCOM was tested in conjunction with PROCOMM® 2.4.2, a versatile communication program for PCs and compatibles. BASIC text files were prepared and stored onto disk in DOS text format using the wordprocessor WORDPERFECT 4.2. Other combinations of communication program and wordprocessor should also work, as long as the files are sent to the BASIC computer and written in DOS text (ASCII) format, i.e., without all the control codes specific to the wordprocessor used. As to the communication program, it is very practical if this offers a SHELL or DOS Gateway command to temporarily switch to DOS, start SENDBAS for loading the updated file, and return to the BASIC computer by means of EXIT. SENDBAS takes over the set baud rate, and awaits the > prompt from the computer before it sends a new line via COM1. The writing of the file can be seen on the screen. After sending a file using SENDBAS, and EXITing DOS to return to the comm program, type a <CR> when the BASIC computer displays

```
READY
```

Type LIST to check the contents of the new program, and run it. The use of SENDBASCOM on a PC-XT turbo is illustrated in Figs. 8 and 9.

A simple filehandler for the BBC micro is listed in Table 6. This program works in conjunction with the well-known wordprocessor VIEW, the micro's serial output and the communication program COMMUNICATOR, set up for VTS2 emulation, XON/OFF, and parity. 9600 baud 1/0. It is assumed here that the user is thoroughly familiar with these programs, and the way they are called up and exited. Test the communication between the BBC micro and the BASIC computer by pressing reset and then the space bar as outlined above.

Owners of a MASTER micro can avail themselves of the built-in terminal, obviating the need to purchase a separate communication program.

Leave COMMUNICATOR, run BASIC, and enter the listing of Table 5. Run the program. It creates a small machine code routine called PRDR-52 (printer driver for 8052AH-BASIC), which is automatically saved onto disk. Select the computer's serial output channel by typing FXS.2. Call up VIEW (*W), and load or write the program (i.e. text file) for the BASIC computer. Install PRDR-52 on the serial port by typing PRINTER PRDR-52 at the command level. The VIEW file is now sent to the BASIC computer at the specified baud rate. The fact that VIEW can not send but complete pages is of no consequence. Leave VIEW and run the terminal emulation program to control the BASIC computer direct.

References:

Procomm® is a registered trademark of Datastorm Technologies, Inc. • PO Box 1471 • Columbia MO 65201 • USA. BBS: (314) 445-9401 (24 h).

MCS-51® is a registered trademark of Intel Corporation.
Earlier this year, a number of Japanese manufacturers introduced a new type of personal taperecording system, which has become known as Digital Audio Taperecorder-DAT. Although this system ran into immediate problems with the combined might of the western world's record makers and composers' and music writers' organizations (which at the time of writing have still not been wholly resolved), it appears that it is here to stay.

There is as yet no standard for the DAT or the tape cassettes, although proposals have been submitted to the International Electrotechnical Commission. Data, standards, and specifications referred to in this article are as contained in those proposals.

Cassette

The information carrier is a magnetic tape of 3.81 mm width rolled on flangeless hubs installed in a cassette with a slider and a lid protecting the tape from accidental damages. The tape is a metal powder type or its equivalent. Information is recorded on oblique tracks formed by helically scanning magnetic heads and can be erased by overwriting. Information is read by magnetic heads that follow the tracks with the aid of Automatic Track Finding—ATT.

The external dimensions of the cassette are 73 x 54 x 10.5 mm: it is thus somewhat smaller than the compact audio cassette.

Recorder mechanism

The mechanism of the recorder resembles that of a video cassette recorder—VCR—but it is somewhat smaller (roughly the same size as the mechanism of a Video-8 machine).

The rotary head drum has a diameter of 300 mm and rotates at a velocity of 2000 rev/min. The angle at which the tape lies around the drum is 90°. The normal tape speed is low: only 1.50 mm/sec. The resulting relative tape speed is, therefore, 3.150 m/sec (the tape speed in a VHS video recorder is 4.85 m/sec). Other tape speeds are: 4.075 mm/sec (half speed) and 12.325 mm/sec (wide track).

The track pitch is 13.891 μm in normal track mode and 20.412 μm in wide track mode. The track length is 23.901 mm (normal mode) and 23.471 mm (wide track mode).

The track angle (tape running) is 8°22′59.8″ in the normal mode and 6°23′29.4″ in the wide track mode. The azimuth angle of the two heads is ±60° ± 15° (see Fig. 3).

The above, and some other, data are summarized in Table 1. Since there are only two heads and the tape runs along only a quarter of the drum diameter.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Tape specifications (normal mode).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape width</td>
<td>3.810 mm</td>
</tr>
<tr>
<td>Recording width</td>
<td>2.613 mm</td>
</tr>
<tr>
<td>Track centre</td>
<td>1.905 mm</td>
</tr>
<tr>
<td>Tape speed (normal)</td>
<td>3.150 mm/sec</td>
</tr>
<tr>
<td>(half speed)</td>
<td>4.075 mm/sec</td>
</tr>
<tr>
<td>(wide track)</td>
<td>12.225 mm/sec</td>
</tr>
<tr>
<td>Track length</td>
<td>23.901 mm</td>
</tr>
<tr>
<td>Track pitch (normal)</td>
<td>13.891 μm</td>
</tr>
<tr>
<td>(wide track)</td>
<td>20.412 μm</td>
</tr>
<tr>
<td>Track angle (normal)</td>
<td>8°22′59.8″</td>
</tr>
<tr>
<td>(wide track)</td>
<td>6°23′29.4″</td>
</tr>
<tr>
<td>Head azimuth</td>
<td>±60° ± 15°</td>
</tr>
<tr>
<td>Optional track 1</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Optional track 2</td>
<td>0.5 mm</td>
</tr>
</tbody>
</table>
(see Fig. 3), the heads will scan the tape for only half the total usable time. This means that the data have to be stored on the tape in time-compressed form; during reading they have to be expanded again. The output signal of the heads is shown in Fig. 4.

The small angle between the tape and the head drum gives the advantage that pull on the tape is small, and also that even during fast forward or rewind operation the tape can remain in contact with the drum. This is essential to facilitate finding a specific passage on the tape quickly (at 200 times normal tape speed). The pull on the tape is then about the same as that on normal video tape.

Recording parameters

Recording parameters are summarised in Table 2. Information is recorded on a main data area as well as on a sub data area, exactly as on a compact disc. However, the sub data area is about 4.5 times as large as that on a CD.

The composition of a single track is shown in Table 3. It is seen that the largest part of the available space is occupied by modulation and subcodes, but the track also contains synchronization data and Automatic Track Following (ATF) zones. These zones enable automatic tracking of the heads.

The individual function blocks are separated by the Inter Block-Caps (IBG). This is necessary to enable writing in the sub data area without affecting the modulation data. In principle, only the main data and sub data areas are of importance to the user, because these are the parts that are audible to him.

From analogue to PCM

It is seen from Table 2 that the normal recording and playback sampling frequency is 48 kHz (the other sampling frequencies will be reverted to later). Sampling is carried out at a resolution of 16 bits. This means that every 21 μs a portion of the analogue input signal is translated into a 16-bit code. This happens simultaneously for the left-hand and right-hand channels. The digital data are subsequently processed in serial form. The data stream consists, therefore, of 48 \(\times 10^2 \times 16 \times 2 = 1.836 \text{ Mbit/s} \).

Processing of PCM data

The PCM data are encoded according to the Reed-Solomon code, which is also used in CD technology. However, in contrast to the CD process, the DAT technique uses the product code of two Reed-Solomon codes, which results in an inner and an outer code. The inner code contains the data bits and the parity bits derived from these according to a certain pattern. This encoded block is surrounded by the outer code, which forms its own parity bits form data contained in the inner code. After this, the data are interleaved, i.e., shifted in time, to enable reconstruction of a possibly lost data bit.

The Reed-Solomon coding and interleaving result in a data redundancy of about 37%, which causes the data stream rate to increase to some 2.45 Mbit/s. Added to this are the sub data information, such as the sampling frequency, the number of channels, copy protection, and so on, which finally gives a data stream rate of 3.77 Mbit/s.

The data thus composed are divided into blocks of 288 bits. The modulation zone of a track can contain 128 of these blocks, each comprising 32 bytes: a total of 4096 bytes. Of these, only 2012 bytes are real data; the remainder serve for error correction.

To increase the reliability even further, the data are divided into blocks, each of which contains the even samples of one channel and the odd ones of the other channel. These blocks are cross-interleaved onto the ± azimuth tracks as shown in Fig. 8. In this way, even when a complete track is lost, or a head malfunction, reconstruction is possible by interpolation of the adjoining tracks.

Since the heads are in contact with the tape for only 50% of the time, the data can not be read or written in real time. The PCM data are, therefore, stored in a 3 × 64 kbit auxiliary memory at the sampling frequency, then read at a higher clock frequency, and subsequently written.

Table 2

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>2 (optionally 4)</td>
</tr>
<tr>
<td>Sampling frequencies</td>
<td>48 kHz; 44.1 kHz; 32 kHz</td>
</tr>
<tr>
<td>Quantization</td>
<td>16 bits linear (optionally)</td>
</tr>
<tr>
<td>Encoding</td>
<td>12 non-linear</td>
</tr>
<tr>
<td>Error correction</td>
<td>2 complement</td>
</tr>
<tr>
<td>Sub code</td>
<td>double Reed-Solomon code</td>
</tr>
<tr>
<td>PCM capacity (each track)</td>
<td>4 kbit/s</td>
</tr>
<tr>
<td>ID codes</td>
<td>68.3 kbit/s</td>
</tr>
<tr>
<td>ID capacity (each track)</td>
<td>1 kbit</td>
</tr>
<tr>
<td>Transfer speed</td>
<td>2.46 Mbit/s</td>
</tr>
<tr>
<td>Information density</td>
<td>114 Mbit/in²</td>
</tr>
</tbody>
</table>

Table 2. Technical parameters of the DAT system.
Fig. 4. The output signal of the heads consists of a series of bursts.

Fig. 5. The composition of the main data area in Table 3.

Modulation of data
When writing the data onto the tape, they are not truly modulated, but subjected to an 8-to-10 conversion. Because of the consequent Non Return to Zero—NRZ—a signal edge is only generated if the bit is 1. In this way, the frequency spectrum on the tape is reduced, which is necessary in view of certain properties of the heads and the tape.

Playback
During playback, the operations of the recording process are carried out in reverse order.

First, the clock frequency is extracted from the HF signal produced by the heads, after which the signal is reconverted from 10 to 8 bits. Subsequently, the cross-interleaving of the data has to be negated, for which the same 2×64 bit auxiliary memory is used. Here, the data are first written and then read again in the correct order. The sub data are separated from the remainder of the information and fed to the system control circuits.

Next, an error correction is carried out with the aid of the double-coded Reed-Solomon code. After this, digital sound data are available which can be processed in a manner similar to those in a CD player. These data are controlled by a digital-to-analogue converter, which may operate with twice or four times oversampling to avoid the necessity of steep-skirted analogue filters.

Sampling frequencies
So far, it has been assumed that the input signal is analogue, for which the sampling frequency is 48 kHz. This frequency is also used for the copying of other DAT tapes (but...
Fig. 8. In the NRZ process a signal edge is generated for each logic high bit.

Fig. 9. Block schematic of a typical digital audio tape recorder.

not proprietary pre-recorded ones—see under).
The 32 kHz sampling frequency is used for 4-channel recording of analogue input signals. It is also intended for future recording of digital satellite channels. With this low sampling frequency, the frequency range is limited to 15 kHz.
The sampling frequency of 44.1 kHz (the same as that of compact discs) is provided for the playback of proprietary pre-recorded tapes. This enables makers of these tapes and CDs to use the same mother tape in the production process.
The DAT has a copy protection circuit that prevents the direct recording from compact discs. This is incorporated at the in-
THE UNIX OPERATING SYSTEM

Now that the US and the EEC are endorsing the UNIX operating system, and the X/Open Group of European and American computer manufacturers are basing their common standards on UNIX, it seems timely to have closer look at this system.

To begin with, it is useful to state that UNIX is no more and no less than a computer operating system, that is, a program that enables users to operate the computer according to an agreed set of commands and utilities. Therefore, UNIX

- is not the latest programming language;
- has essentially nothing to do with graphics assisted programming;
- has provisions for manipulating the computer memory, whether resident as hardware, or in the form of a magnetic storage device (tape; hard disk);
- forms the lowest command level for loading and running higher language interpreters and compilers (C, Cobol; Fortran).

UNIX in its most elementary form is fairly crude, and has none of the user friendly features offered by currently available PC operating systems as, say, PC Boss, GEM, POWER, or MS Windows. It is an operating system intended mainly for minicomputers and mainframes that communicate with a number of users via terminals. The system is, therefore, said to have multi-tasking and multi-user capabilities, and the operating speed of the computer depends on the processor load caused by the users accessing and manipulating various data fields, utilities and programs in the memory. One of the most important points about UNIX is its portability, which means that it can be installed on any (big) computer running the C programming language—more about this later. The recently introduced fast PC ATs, hard disks, 68020 and 80386 based PCs, RISC (reduced instruction set) computers, transputers, and the absence as yet of a supporting disk operating system (DOS)

from MicroSoft, have furthered the interest in UNIX, which, in its most rudimentary form, has long been the exclusive domain of academic and scientific institutions. Whence, then, the interest in a fairly primitive operating system when existing DOS versions support full-screen command editors, turn-key and ready-programmed utilities for complex file operations, and computer control direct from a keyboard? Surely, these are preferable to a terminal and a serial link to and from the computer? The answer to this is, paradoxically, another question: if the latest computers are so fast, and come with so much memory at affordable cost, why not share their capabilities between several users?

The story of UNIX

The evolution of UNIX is shown simplified in Fig. 1. In 1969, two programmers at the Bell Laboratories, K Thomson and D Ritchie, decided to develop a time sharing system for the PDP-7 computer. The program was written in assembler code, and named MULTICS. Some years later, the higher programming language C was developed, and applied to MULTICS to make this portable to other systems. The resultant operating system was called UNIX, and Bell Labs distributed it to many non-profit institutions, including the University of California, Berkeley. Due to various political and economic reasons, UNIX was further developed in numerous other, mainly academic, institutions and all standards seemed to be lost for a time. Researchers at UC Berkeley, however, once more applied the latest version of C to UNIX, and came up with the so-called C shell, which gave greater flexibility than the

Fig. 1 The history of UNIX is one of many derivatives, licence holders and marketers.
earlier Bourne shell in implementing the system on a mainframe. The shell of UNIX is part of the software that translates the user's commands into workable code for the kernel, which forms the system's "brain." The programs that run under UNIX have direct access to the kernel. Programmers at AT&T reworked UNIX using the C shell, and eventually released SYSTEM 3. They also agreed to support licence holders for this product, and worked on further improvements as to compatibility with previous releases.

Microsoft, DEC and IBM were among the many marketers to use UNIX as the basis for a new operating system. While DEC and IBM worked on software and hardware for mainframes, or, in any case, large computers, Microsoft came up with a version of UNIX that could be implemented on 8086 and 8088 based machines, in other words, the (IBM compatible) personal computers. XENIX is a large operating system, requiring at least 612 kbytes of RAM, and a 10 MB hard disk. It is a multi-user and multi-tasking system that runs on PC DOS as a subset or concurrently. Obviously, the speed of XENIX is not up to that of a mainframe, even if the processor load is relatively light.

PC/UX is marketed by IBM, and is not a true version of UNIX in that it supports but one user. It can, however, run multiple tasks, and supports the DOS functions. Contrary to XENIX, PC/UX uses the Bourne shell.

With the arrival of the previously mentioned new generation of fast PCs, the need arose for a single, standardized, version of UNIX, which at that time existed in a multitude of derivatives. For the first time since the development of MULTICS, written in assembler code, the hardware configuration of the computer running UNIX became a major issue—remember that UNIX in the form of a C file required compiling and adapting certain "modules", particularly in the shell, to suit the particular hardware used; this was all for the sake of portability, which enabled programs written in higher languages, such as Fortran or Cobol, to be loaded and run on many types of computer. It can be argued, therefore, that UNIX owes some of its popularity in the professional fields to the programming language C, which has, meanwhile, developed into many different versions, the best known of which is probably Borland's Turbo C.

Three years ago, a number of computer hardware manufacturers teamed up to form the X/Open Group, which includes Bull, Ericsson, Nixdorf, Olivetti, ICL, Philips, DEC, Unisys, Hewlett Packard, and Siemens. Recently, AT&T also became a member, while Gould and Honeywell are bidding for acceptance in the group.

The aim of the X/Open group is to set the standard for the UNIX operating system, and, possibly, to arrive at a complete integration of UNIX and DOS. The starting point for the Group's proposals is UNIX System V, and the associated System V Interface Definition (SVID) from AT&T. The new version of UNIX will be called POSIX (portable UNIX).

Working with UNIX

The scope of this introductory article does not allow detailing every aspect of the UNIX operating system. None the less, some idea will be given on how a user communicates with the computer through UNIX, or, more precisely, the UNIX shell. Through the terminal, console or PC, the user must first log into the system and state a valid password to gain access to the files and/or programs in (sub)directories he is authorized to work with. Some of the simpler utilities in UNIX are resident, i.e., always available irrespective of the file or directory currently opened. As an example, Fig. 2 shows the directories available to user Henry2, who operates one of the terminals in the system. Henry2 has access to files in the directories set up for Fortran, Word-processing, Desktop Publishing (DTP), and Computer Assisted Design (CAD), but not to Accounting. Each of the directories shown is divided into a number of subdirectories, and files can be transported between them. So far, the system looks very similar to a DOS tree structure. In principle, there is no limit on the number of directories, provided there is enough space on the hard disk. Several users may access the same file simultaneously, and programming tasks may be carried out in the background, which is the user starts the relevant command sequence, and the computer determines the appropriate moment for dealing with it and presenting the output. So-called pipes and filters can be set up to feed the output of one command to the input of the next. Using command tee, it is even possible to specify the location of a tee fitting in pipe.

This enables feeding data in parallel to two or more processes simultaneously.

UNIX has a number of built-in editors, which are all equally powerful and the well-known DOS line editor, EDLIN. Depending on the data involved, and the type of terminal, the user selects the line editor (ed or ex), the screen editor (vi), or the stream editor (sed) before calling up a file or running an application program. UNIX has commands and utilities for scanning, concatenating, deleting, copying, dating, sorting, comparing, locking, filtering, encrypting and copying files. If a particular file operation is expected to cause a considerable processor load, it can be carried out in the background, or even in the absence of the operator. In most UNIX based systems, there is a central system controller who assigns the priority levels to users, and determines whether or not they have access to certain directories. Usually, the controller's own terminal has the highest priority, and is located near the computer. The controller's task is to monitor the processor load, and, if necessary, redirect commands to the background level.

Unix and MS-DOS: competition or integration?

It is interesting to note that the term DOS has become a synonym for computer operating system, whereas, strictly speaking, it is only a disk operating system. UNIX is a computer operating system in the true sense of the word, and DOS, therefore, forms a part of it.

As already stated, the new 32-bit microcomputers are definitely fast and powerful enough to carry a "heavyweight" operating system such as UNIX, if this is supported by the hardware standards proposed by the X/Open Group. But what is the future of such a standard if IBM is not a member of the group? Every PC user knows that there exists a huge mass of software running under MS-DOS, and fears may arise that this is incompatible with the PC version of UNIX that will eventually evolve from the Group's activities. Fortunately, IBM considers it "consistent to support Posix as a standard as well as enhancements to it," to quote the company's market development manager, Mr Art Goldberg. IBM, in co-operation with Interactive Systems, has already introduced a UNIX computer for professional applications: the 6080 PC RT UNIX. For 9808 applications, the companies have developed
a virtual machine monitor called VP/ix. This makes it possible to support multiple DOS users under UNIX. Recently, AT&T licensed Microsoft to develop a 80386 based version of UNIX, as a follow up of XENIX.

The Model 60 in the recently launched Personal Series 2 computers from IBM can run the proprietary Operating System 2 (OSS) as well as DOS version 3.3. OSS is similar to UNIX and XENIX in that it allows running programs in the background. Nevertheless, IBM have tentatively announced their own version of UNIX for the Model 80.

A lot is happening in the current computer scene, and the announcements of major computer manufacturers and software houses concerning UNIX follow in rapid succession. It will take some time, though, before UNIX will be available to the user of a personal computer that is not part of a network.

Meanwhile, the development of suitable LANs (local area networks) is an important aspect in the discussion on software for multi-user systems. It is not unlikely that the work of the X/ Open Group will provide a strong impulse for the standardization of networks with, say, 16 users. As usual in the computer business, the users are after standardization and cost effectiveness, and the manufacturers after increasing their sales. Numerous events in the past have shown that these interests are at best . . . incompatible.

```
UNIX(r) VAX11/750
# login: henry2
password: intime
% who
William tty03 Nov 5 08:15
Anita console Nov 5 08:31
Steve tty13 Nov 5 09:12
% write william
pascal program ready for testing on tty30
 o
yes send as /bin file please
00
% cd reports
% ed newdoc
?newdoc
87166
```

A typical programming or file editing session under UNIX starts with the login procedure.

For further reading:

DEC is a registered trademark of Digital Research.
IBM, IBM PC and PC/IX are trademarks of International Business Machines Corporation.
UNIX is a registered trademark of Bell Laboratories.
XENIX, MS Windows and MS-DOS are registered trademarks of Microsoft Incorporated.

automatic car aerial

Many motorised car aerials are not fully automatic in operation but are provided with a manual dashboard switch. This has a biased centre off position, and to raise the aerial it is necessary to hold the switch over to one side until the aerial is fully extended. To lower the aerial the switch is held over to the other side until the aerial is fully retracted. It is quite easy to forget to lower the aerial when leaving the car, thus losing the vandal-resistant advantage of a motorised aerial.

The circuit described here will raise the aerial automatically when the car radio is switched on and lower it when the radio is switched off. S1 can be the special switch contact provided for this purpose in some car radios, or an extra lead may be taken from the normal on-off switch, since little extra current is drawn through this contact. T3 is normally turned on. When the radio is switched on (S1 closed) T3 is turned off. Current flows from S1, charging up C1 through R4, P3 and the base of T1. T1 turns on, energising R2 and causing the aerial to extend. The time for which the aerial motor runs can be adjusted to the correct value by P1. When the radio is turned off T3 turns on and C2 charges through T3, R5, P3 and the base of T2. T2 turns on, R2 is energised and the aerial retracts. The time can again be adjusted (by P2).
THE INMOS TRANSPUTER AND OCCAM

A brief introduction to the higher programming language tailored to supporting the transputer's concepts of concurrency and parallel processing.

Traditionally a computer is set up according to John von Neumann's model: a central processor fetches instructions from a memory and manipulates data accordingly. Whatever its speed and internal architecture, the processor can only handle a single instruction at a time. This is even true in multi-user and multi-tasking systems such as UNIX and concurrent MS-DOS, where the processor is apparently engaged in several tasks at a time, but in reality assigns time slots to portions of the relevant task(s). Obviously, the faster the processor, the less users are aware of the time sharing process.

The transputer is a radical departure from the von Neumann concept. Transputers are optimized for true concurrency. Parallel processing of data and instructions is achieved by synchronized, very fast point-to-point communication channels between processes as well as individual transputer modules. There is, in principle, no limit on the number of transputer modules that can be connected to form a computer. In contrast to other processors, transputers enable defining the speed of the system simply by adding as many modules as required. Currently, the IMS T800 transputer from Inmos is the fastest single chip microcomputer available. In the so-called Whetstone benchmark test, the 80 MHz version outperforms all of its 32 bit competitors, including the Fairchild Clipper, the National Semiconductor NS3358—32881 and Motorola's MC68030—86881. Note that the latter 2 are combinations of a microprocessor and a floating point arithmetic co-processor: the transputer has both of these on a single chip. The calculation performance of the IMS T800 is equal to that of the VAX 8800 scientific computer from DEC, while a network of 10 IMS T800 modules offers the speed and processing power of the Cyber 205 supercomputer from Control Data Corporation. Clearly, the hardware concept of true parallel processing implemented in the transputer guarantees a yet unheard of computing power, but at the same time calls for supporting software that exploits the concurrency, and so enables gaining most benefit from the transputer architecture. The answer was given by Inmos themselves in the form of the higher programming language Occam.

Concurrency in software

Before introducing the higher programming language Occam, it is useful to note that a transputer can also run existing scientific programming languages including C, Fortran and Pascal thanks to the availability of suitable compilers. Interestingly, some software houses have applied the parallel programming constructs available in Occam to implementations of existing higher programming languages, with the aim of optimizing speed and performance.

Occam is not just a new programming language, it is the framework for designing concurrent, transputer-based systems. As such, it is similar to Boolean algebra as the framework for designing with logic gates. Abstract logic functions can be realized, i.e., built using the actual gates, while the function of a number of these can be analyzed in turn by the corresponding Boolean notations. Similarly, a process in a computer can be thought of as a black box, with inputs and outputs. Processes can be connected together by channels to produce more complex, concurrently operating systems. A collection of processes is in itself a larger process with internal and external concurrency. The transputer has a scheduler which enables any number of concurrent processes to be executed together, sharing the processing time. Occam has provisions for supporting this hardware concurrency, and is stated to be as efficient as hand coding, obviating the need for an assembly language. The central processor in the transputer is so fast that procedure calls, process switching and interrupt latency all have a duration in the sub microsecond region. Processes waiting for communication or a timer function do not consume CPU time. The floating point unit in the IMS T800 is a 64-bit type to ANSI-IEEE 754-1985, operating fully concurrent with the processor at more than 1.5 MFLOPs. Data between processes is transferred via links, which are either unidirectional or bidirectional. The 4 available links are synchronized DMA block transfer mechanisms operating at a speed of 20 Mbit/sec, with 10 and 5 Mbit/s also allowed for compatibility with other Inmos transputers (IMS T32, IMS T44). The internal 4 Kbyte

Fig. 1 Block diagram of the IMS T800 transputer module from Inmos.
memory can be accessed at 120 Megabytes/s, and the IMS T800-30 can directly address an external memory area of 4 Gigabytes at a rate of 40 Megabytes/s. The block diagram of the IMS T800 transputer is given in Fig. 1.

There exists a remarkable architectural relationship between Occam and the transputer. With the introduction of Occam, Inmos, like no other semiconductor manufacturer, have succeeded in getting software to hardware, and vice versa. In Occam, there are 3 primitive processes, namely input, output, and assignment. Each of these can be performed in 3 ways: sequentially, in parallel, or alternatively. The latter term simply means that whichever data is first available is first processed. Parallel processes are set up by defining channels through which the data is routed. At first sight, Occam programs look very similar to, say, C or even Fortran. This is because the writing down of instructions on paper is in fact a sequentional process: we can not express concurrency by writing 2 or more instructions over another, since this would make the text illegible. Thus, although the program is still made up of lines of instructions, these are not necessarily executed in the indicated order, or in the order indicated by the instructions themselves (as is the case with, for example, COBOL, ONERR, or GOTO in BASIC). Also note the complete absence of line numbers.

The structure of an Occam program reflects the hardware concept of parallelism, but the programmer need not bother where and how the actual processes are executed in the transputer. Concurrent programs are by no means easy to write and debug. And yet, Occam is readily learnt once its formal description is known.

The principles
Two brief examples will be given of hypothetic Occam programs reproduced from reference 6. The first is given in Fig. 2. The protocol of channels comm1 and comm2 is defined as integer transfer with the aid of statement CHAN OF INT. PAR defines parallel processing i.e. the data obtained from

![Image](image_url)

Fig. 2 Illustrating how Occam makes the distinction between parallel and sequential constructs.

![Image](image_url)

Fig. 3 This Occam program controls the digital volume input on a hypothetic AF amplifier.

when either louder, softer, or off is actuated. For instance, if the softer button is pressed, the sequential process of decreasing the value assigned to volume is started, but this does not mean that the other ALT processes are not continuously interrogated for activity. The program terminates when the off button is pressed, since this ends the validity of the WHILE statement.

Conclusion
The previously discussed programs illustrate only a few of the many instructions and statements available in Occam. It is beyond doubt that Occam is currently the only language that enables profiling from the concept of parallel processing in a network of transputers. Inmos have a vast range of products to aid in learning how to work with transputers. As to hardware, there are. for instance, memory extension modules, a chip with a very fast colour look up table (CLUT), link switch and adapter modules, and, most importantly, development and evaluation systems. These are available for various computers, including the VAX/VMS and the IBM PC XT/AT. Also available are complete evaluation modules composed of a rack, a busboard, a power supply, and cards with an option for fitting a number of IMS T414 or IMS T800 transputer modules. Clearly, Inmos, in contrast to many of its (would-be?) competitors, deserves credit for presenting hardware and supporting software for a computer concept that is both completely new and close to real life, since it is based on concurrent rather than sequential processing.

Reference:
"A tutorial introduction to OCCAM programming, by Dick Pountain."

More information on transputers and Occam can be found in:

The transputer family: Product Information. Inlos Spectrum.
IMS T800 Architecture
All publications are available from Inmos Limited • 1000
Aztec West • Almondsbury • Bristol BS12 4 SQ. Telephone: (0484) 818618. Telex: 444723.
A simple circuit overcomes the well-known difficulty in maintaining the triggered condition of a silicon controlled rectifier when this is used for regulating inductive loads.

The vast majority of dimmer circuits is only suitable for regulating resistive (non-reactive) loads, i.e., when there is no phase difference between the mains voltage and the load current. This means that the trigger pulses can be kept relatively short, since the load current is in phase with the mains voltage immediately after triggering has taken place. Normally, the load current is greater than the holding current, so that the triac or thyristor is triggered immediately, and remains on.

When the load is mainly inductive (e.g., a transformer, or a choke for a fluorescent lamp), the load current lags the voltage, and may either not have reached, or exceeded, the holding level. The SCR then conducts briefly, but is switched off at the end of the trigger pulse. This unwanted effect can be kept within limits by means of stretching of the trigger pulse, triggering by pulse trains, or the use of an R-C network. The first approach calls for a control circuit with appropriate drive power. The pulse duration requires exact controlling to prevent pulses occurring after the zero crossing of the mains voltage, causing erroneous triggering. Suitable circuits to accomplish this are, understandably, relatively complex.

A simpler way out is the R-C network, which in essence raises the current to the holding threshold, so that the SCR remains on when the trigger pulse is inactive. Although SCR manufacturers usually provide the relevant design data for this application, it is still fairly difficult to dimension the circuit for optimum and reliable triggering. In most cases, therefore, trial and error adjustments are required, as well as signal analysis with the aid of an oscilloscope.

Triggering by pulse train

The circuit described here is based on gate triggering by a pulse train, yet is composed of discrete components only. Figure 1 shows 3 ways of controlling a triac.

Figure la illustrates a phase angle control circuit for the load ZL. It is composed of a triac T, a diac D, and a timing network R-C, where R is (P), connected in parallel with D-A1, and C is connected in parallel with D-A2. In this circuit, the triggering is load dependent, in other words, synchronization is by the voltage across the triac, and this is a function of the load current.

The circuit is, therefore, unsuitable for regulating highly inductive loads requiring a small conduction angle. Also, there exists a strong tendency to asymmetrical operation, which can be dangerous in view of saturation of the inductance due to the relatively high direct current.

Figure 1b shows a basic circuit for triggering the triac by the mains voltage. Here, timing resistor (R) is connected to the neutral line instead of parallel to D-A1. The trigger pulses occur with a fixed phase difference of 180°, irrespective of the load current. Although this circuit offers more accurate control of the load than the previous one, its operation becomes completely asymmetrical if the gate angle is smaller than the angle representing the current lag in the load. Another disadvantage is the requirement for connection to the phase and neutral lines as shown in the diagram.

Figure 1c shows a slightly more complex triac control circuit. Following the trigger pulse, additional pulses are generated up to the next zero crossing of the mains voltage. The operation of the circuit is illustrated in timing diagram Fig. 2. The output signal of a phase difference, φ, of 85° between the mains voltage and the load current, and the gate angle, θ, of 50°, the triac is triggered after the trigger delay has lapsed (A), and remains on up to about 240° (B) thanks to the pulse train. It is blocked at point R, but is immediately retriggered by the next repetitive gate pulse. The operation is slightly asymmetrical during the first half periods, but the duration of conduction gradually becomes more balanced, as shown by the dotted curve.

The practical circuit

The circuit diagram of the dimmer for inductive loads is given...
in Fig. 3. A small, sensitive, auxiliary triac, Tria, generates the pulse train necessary for maintaining the gate control signal for Trii. Capacitor Ci, compensation resistor Rs and potentiometer P1 define the gate angle of Tria, enabling setting the minimum conduction angle, so ensuring reliable triggering of Trii even when the load current is fairly low.

Capacitor Ci is charged from 0 V, and diac Di triggers as soon as its breakover voltage is reached. The set conduction angle is equal for both half periods.

A first pulse is applied to the gate of Trii, and the voltage surge on Rs triggers Trii. Once this is on, it bypasses resistance $(Rs + Ps) / (Rs + Ps)$, so that the remaining charge cycles of Ci have a much shorter period $(Rs + Re)Ci$. After this delay, Trii is triggered, starting a new cycle. A succession of pulses is applied to the gate of the main triac, Trii, until the mains voltage reaches the zero crossing. Triac Trii is then blocked, so that the charging of Ci during the following half period is determined by the time constant set by the resistance $(Rs + Ps) / (Rs + Ps)$. Once more consult the timing diagram of Fig. 2 for further details on the operation of the circuit.

Zener diodes D2, D3 incl. afford protection against over-voltage, and at the same time ensure a stable supply voltage for the trigger circuit, eliminating instability due to fluctuations on the mains. Diodes D4, D5 incl. and resistors R1 and R2 ensure that Ci is completely discharged during the zero crossings, so that the hysteresis remains within acceptable limits. Damping network C6-R7 has a stabilizing effect on the control circuitry because it suppresses needle pulses originating from the inductive load when this draws less than the holding current of the main triac.

Construction: safety first

The dimmer is constructed on the printed circuit board shown in Fig. 4. Power resistor Rs should be fitted slightly off the board to allow for its dissipated heat. Inductor Li is a common triac suppressor choke, which is not strictly required for in-

Fig. 1 Three ways of controlling the gate angle in a triac based dimmer.

Fig. 2 Triggering by a pulse train synchronized with the mains voltage.

Fig. 3 Circuit diagram of the dimmer for inductive loads.
Fig. 4 Track layout and component mounting plan for the dimmer PCB.

Inductive loads. For resistive loads, however, it should not be omitted because it limits the switch current surge. The inductance and current rating of \(L \) are as required by the load; the indicated values of 100 \(mH \) and 10 A are only required when the dimmer is used for regulating loads of the order of 750 W and more. The size of the heat-sink for Tri is mainly determined by the available space in the ABS enclosure. A few holes should be drilled in the lid to ensure sufficient cooling of \(R_s \) and Tri. Make sure that the whole unit is rugged and properly insulated. If used, the input and output cable should be fed through a grommet, and secured by a suitable strain relief. Be sure to use a potentiometer with a plastic shaft.

VARIous PARTS IN THE DIMMER CARRY THE MAINS VOLTAGE AND ARE, THEREFORE, DANGEROUS TO TOUCH WHEN THE UNIT IS OPERATIONAL.

Finally, the circuit described offers good accuracy of control, without the need for an additional supply. It enables virtually complete variation of power on inductive loads rated up to approximately 1,000 W.

Source:
Triac Applications, Thomson Semiconductors.

LED logic flasher

The condition of the LED is determined by the logic states of the two inputs A and B. If A is low and B is high then the LED will be lit continuously. If B is low then the LED will be extinguished, irrespective of the state of A. If A and B are both high then the astable multivibrator comprising N1, N2 and N3 will start to oscillate and the LED will flash at about 3.5 Hz. Component values are given for supply voltages of 3, 10 and 15 V. At the maximum supply voltage of 15 V the current consumption is less than 25 mA.

Source: RCA CMOS Application and design ideas.
PRECISE MOTOR SPEED REGULATOR

by Arturo Wolfgruber *

By virtue of an innovative dual control loop scheme, the TDA7272 motor speed regulator chip achieves both fast response and long-term stability without speed sensors.

The speed of small DC motors is usually controlled either by regulating the current or with a velocity feedback loop using a tacho generator or speed sensor. But both of these systems have disadvantages. Current control offers a fast response to transients but poor long-term stability, while velocity feedback schemes need a costly tacho generator and only provide an adequate transient response if a high-frequency AC tacho is used.

A new motor speed regulator chip, the SGS TDA7272 (Fig. 1), combines the best features of the two techniques, having a current control loop to guarantee fast transient response, plus a velocity feedback loop to guarantee long-term stability. Unlike conventional velocity feedback controllers, the TDA7272 needs no tacho generator or speed sensor; it determines the motor rotation speed exactly by sensing the motor’s commutation spikes.

H-bridge output delivers 1 A

Originally designed for autoreverse cassette tape players, the TDA7272 includes a H-bridge output stage capable of driving a DC motor in both directions with a single supply and delivering up to 1 A peak output current.

Two logic inputs select the direction of rotation—clockwise or counterclockwise—and fast braking (with the motor short-circuited by the device’s output stage), or the standby/free-running mode where all four transistors in the bridge are turned off.

By means of external resistors or control signals the rotation speed may be set independently for each direction. In a typical μC-controlled auto-reverse car cassette player the two speed control inputs are commoned and connected to ground via a resistor which sets the play speed and is shorted by an open-collector output to select the fast forward/rewind speed.

The TDA7272 operates on a 5-18 V supply and includes protection against load dump transients, output short circuits and thermal overload.

The device is assembled in a special high power DIP package called Powerdip 16+4+2. This 30-lead package has a thick copper leadframe and uses the four center pins to conduct heat from the die to the printed circuit board copper. Suitable for automatic insertion, this package is ideal for applications where space is limited.

Senses motor commutation spikes

One of the most interesting features of the TDA7272 is its ability to determine the true motor rotation speed by sensing the commutation spikes across the motor terminals.

Figure 2a shows the current waveform in a typical three-phase miniature DC motor. In the TDA7272 this waveform, converted into the corresponding voltage waveform by a sensing resistor, is differentiated and clipped to obtain a feedback signal consisting of six pulses per rotation (Figs. 2b & 2c).

A hysteresis of 10 mV and 20 mV bias in the clipping comparator assures sufficient noise immunity to make this scheme reliable in practice.

In a typical cassette player the motor runs at about 2000 rpm so the tacho pulse signal will be roughly 200 Hz.

These pulses are then integrated to provide a voltage proportional to the motor speed. This voltage is compared with a reference voltage—derived from the speed-setting inputs—in the error amplifier.

However, the integration capacitor must be large to minimize ripple, which explains why pure tacho feedback schemes suffer from a poor transient response.

This is where the TDA7272's...
Fig. 3. In a typical autoreverse car-cassette application, the TDA7272 speed controller drives a bidirectional motor and both feedback loops are active. Rewind speed is selected by shorting the resistor on pins 17 & 20.

Fig. 4. The TDA7272 may also be used to drive two one-way-only motors running at different speeds, or one motor running at two speeds.

second control loop comes in. Current feedback from the motor is summed with the output of the error amplifier. Consequently, large transient speed changes are compensated immediately by the current loop, leaving only a small error for the velocity loop to correct in order to maintain a precisely controlled speed. An external resistor sets the amount of V/I 'preregulation' superimposed on the tacho control loop. This resistor is chosen to provide the optimal balance between transient response and speed precision for each application. The current control loop can even be inhibited completely to save components in applications where both the motor’s load and supply voltage are sufficiently constant to obviate the need for fast transient response.

Useful in many applications
The TDA7272 motor speed controller is useful in many applications where precise ±1/1000 speed control of small DC motors is required. Figure 3 illustrates how the device is used in an autoreverse car-cassette player or tape recorder, driving a single bidirectional motor. In this application both control loops are used. The effective speed control provided by the TDA7272 is important in tape players since it affects directly the audio quality, minimizing wow, flutter and pitch errors.

Note how an open-collector output of the μC chip selects either play or rewind speed by shorting the speed setting resistor.

The TDA7272 can be used equally well in applications where the motor never reverses. Alternatively, a single device can drive two motors operating at different speeds, or a single two-speed motor as shown in Fig. 4.

Though the device was designed for use without tacho generators, it can easily be used with one, or with a digital-type speed sensor. This can be useful when, for example, greater noise immunity is required, or where a motor/tacho combination is already

Fig. 5. A tacho generator can be added where greater noise immunity is needed. If the tacho frequency is above 2 kHz the current loop is unnecessary, allowing a saving in external components.

Fig. 6. Where the TDA7272’s 1 A output capability is insufficient, power opamp boosters can be added as shown here.
available. Moreover, if the tacho frequency is high enough—at least 2 kHz—the current feedback loop is not necessary, permitting a saving in external components, as shown in Fig. 5. For applications where the TDA7272’s A output capability is insufficient, high power opamp boosters such as the SCS L465 may be added as shown in Fig. 6. This circuit delivers up to 4 A with a motor supply of 40 V. High power speed control circuits like this are useful in the industrial and electromedical fields.

Another useful feature of the TDA7272 is that a TTL-compatible tacho signal derived from the commutation pulses is available on pin 14; there are 6 pulses per rotation. This output can be used, for example, to count the revolutions for applications such as measuring the flow rate of a pump, or the travel of a servomechanism. The pin 14 tacho output may be connected to a presettable up/down counter, or to a counter/timer peripheral such as the 28430 (Fig. 7).

Using an 8-bit counter in the 28430 it is possible to count up to 1023 revolutions; 2 cascaded 6-bit counters can count up to 10923 revolutions. In the circuit of Fig. 7, a 28420 parallel I/O peripheral controls the motor speed through a D/A converter.

* Arturo Wolfsgruber is with SCS Microelettronica SpA.
Such problems are said to be in the class P (for polynomial time). Like all theorists, computer theorists tend to be a little unrealistic at times: actually, despite this definition, not all P-problems have genuinely practical solutions. Most programs that run in a time that is any larger than the size of the input cubed (i.e., multiplied by itself twice) are probably going to be impractical. This is because the greater the power of the polynomial (i.e., the more times you multiply the size of the input by itself), the longer the program will take as the input size increases.

Towards exponential blow-up

NP is the class of problems with solutions that can be checked in polynomial time. For example, in the “subset-sum problem” considered at the beginning of this article: if you want to convince somebody that there is a group of numbers whose sum is 17, all you need do is provide a group that does add up to 17. A computer takes practically no time at all to add up a given group of numbers and check whether or not the result is 17. Note that this implies nothing about how hard it is to find a solution, only that if somebody thinks they have a solution, a computer can easily check it. The trouble with problems such as subset-sum is that however hard computer scientists try, they can come up with little better than a program that inspects every possible group of numbers from the 10,000 provided and checks to see if the sum is 17. With a few tricks, it is possible to get the number of combinations to be inspected down to just over one thousand billion billion billion. Given that the fastest computers operate at a rate of mere millions of instructions per second, solving the problem is a lost cause. This obstacle is known as exponential blow-up. All the known programs for problems such as subset-sum and the travelling salesman suffer from the fact that when you add just one more element to the input (such as one more city in the case of the travelling salesman) the amount of computation time required is multiplied by some number. Such a program is said to have exponential time complexity. This quickly makes the computation time extremely large. Imagine a chessboard with a penny on the first square, two on the second square, and so on, with the number of pennies doubling on each square. On the last square, there will be enough pennies to buy around ten billion tons of gold.

When computer scientists defined the class P in 1964, NP was not even a dot on the horizon. But they were turning up problem after problem that exhibited the troublesome features of subset-sum: easy to check a solution if you have one, difficult to find the solution in the first place. Scheduling the operation of different bits of machinery at a factory to get the most efficient production is another such problem, for which no polynomial-time program has yet been found. Current programs use rough and ready rules of thumb to get an answer that is good, but probably not the best.

During the 1960s, scientists noticed that some NP problems could be reduced to other NP problems, which turns out to be a helpful start. For instance, a travelling-salesman problem can be converted into an instance of the subset-sum problem with the help of a conversion program that runs in polynomial time. At the moment, this does not help much because subset-sum problems are just as difficult to solve as travelling-salesman problems. But if you could find a polynomial time solution to subset-sum problems, you could automatically get a polynomial solution to travelling salesman problems by tackling the program to solve the subset-sum problem on to the conversion program. This is because the running time for the two-part problem would be the sum of the times for its constituent programs, and adding two polyminals gives you another polynomial. Suddenly, solving many problems became as easy—or as difficult—as solving one of them.

The main breakthrough came in 1971 when Dr Stephen Cook, a computer scientist at the University of Toronto, proved a remarkable theorem. He showed that all NP problems could be reduced to a single NP problem in logic called satisfiability (or SAT). If SAT has a fast solution, every NP problem has a fast solution. SAT is therefore said to be an NP-complete problem. It became, in one sense, the most difficult problem in NP. In 1963, Dr Cook got a Turing award—computer science’s equivalent of the Nobel prize. Hard on Dr Cook’s heels came Dr Richard Karp from the University of California at Berkeley. Dr Karp reduced SAT to a raft of other NP-problems. At first, this sounds an odd thing to do because Dr Cook had already shown that everything in NP can be reduced to SAT. But the fact that SAT itself can be reduced to subset-sum, and to a handful of other NP-problems, as Dr Karp showed, means that SAT cannot be harder to solve than subset-sum. Dr Cook’s reduction of everything in NP to SAT showed, in effect, that nothing in NP was harder than SAT, so—taking Dr Cook’s and Dr Karp’s results together—it follows that nothing in NP is harder than subset-sum. Subset-sum, like SAT, is NP-complete. Dr Karp, who gave the question “P = NP?” its present form in a paper published in 1972, won the Turing award in 1986.

Dr Leonid Levin, a Russian mathematician now at Boston University (there are quite a few emigre Russian mathematicians working in computer science in America) developed the concept of NP-completeness independently, if a little later than Dr Cook and Dr Karp. The concept of completeness is crucial to a problem such as “P = NP?”.

Either you show that P = NP is true or you show that it is false. To show that it is true, you must show that every NP-problem is in P. But there are infinitely many NP-problems. On the other hand, showing that P = NP is false would mean producing an NP-problem that cannot under any circumstances be solved by a polynomial time program. Which problem from NP do you select? You may choose one only to find that it does belong in P, which still leaves you in the dark about all the other (infinitely many) problems in NP.

The concept of NP-complete problems helps you here, because it tells you which problems in NP to look at. The NP-complete problems are the hardest ones in NP. If any NP-complete problem can be shown to be in P, then all of NP is in P. Likewise, if you are working on the assumption that NP is different from P, your best bet is to show that some NP-complete problem is not in P because if any problem in NP is not in P it will be the hardest one. Cook’s theorem allowed computer scientists to confine their attention to the complete problems, and ignore the rest.

Can oracles help?

Even so, and despite their best efforts, computer scientists have got nowhere with the problem in the 15 years since Dr Karp first brought it to their attention. Perhaps surprisingly, there are three possible answers to “P = NP?”: yes, no, and indeterminate. Although each has its champions, most computer theorists believe that the answer is no—largely because people have been trying to find polynomial time programs for NP-problems for a long time, and have failed miserably.

Not only have computer scientists failed to prove that P is not equal to NP, they have managed to show (worse luck) that one of the traditional methods for distinguishing classes of problems can work in the case of NP. This emerged from work on some strange computers called oracle machines.

Imagine an ordinary computer that is attached to a black box. In the black box lives an elf, who is an expert on a certain problem—call it A—but doesn’t know about anything else. If a programmer asles the elf true-or-false questions about A, the elf answers instantaneously.

Now it is possible to define two classes of problems, P A and NP A in the same way that P and NP were defined: P A is all problems that can be solved in polynomial time by the computer with the aid of the elf, while NP A is all problems that have solutions that can be checked in polynomial time. The computer now has the extra power of this elf, or oracle. With this extra power the computer can solve problems in far less time than before. Suppose, for example, that the elf knows all about subset-sum. Then the oracle computer can compute any NP-problem in polynomial time, since it need only convert the NP-problem to subset-sum.
The idea is to consider all the digital circuits that can solve a certain problem. The problem is encoded using 0s and 1s and fed into the inputs of the circuit, which yields the answer (1 or 0). A circuit is made up of simple components called gates. The link between circuits and the "P=NP?" question lies in the number of gates required by a circuit to solve a particular problem. If the circuit for a given problem needs more than a polynomial number of gates, that problem cannot be in P. So computer scientists try to show that, for example, SAT cannot be solved by a circuit with only a polynomial number of gates. If it cannot, P=NP must be false.

One of the leading computer scientists working on circuits is Dr. Michael Sipser at the Massachusetts Institute of Technology (MIT). Dr. Sipser and his colleagues concentrate on much easier problems than NP-complete ones. They have spent a lot of time on the circuit for a problem called parity, which works out whether there is an odd or an even number of 1s in a string of 0s and 1s. The problem of parity is a straightforward one that is definitely in P, but studying satisfiability without looking at simpler problems first would be just too difficult. One technique is to handicap the circuit in some way. For instance, computer scientists might restrict the type of gates. If they can sort out the simpler restricted cases, they may be able to apply the principles they learn there to the general case.

Plenty of work on circuits has already been done by scientists in the Soviet Union, as a group of graduate students at the University of California at Berkeley accidentally discovered last year. The students had come up with what they and most others thought was a novel result about the minimum number of gates needed to solve the parity problem. To their chagrin, they learned from a paper in an obscure Soviet journal that it had already been done several years earlier. Dr. Alexander Razborov from the Steklov Institute in Moscow seems to be the leading researcher. Dr. Sipser collars the occasional Russian graduate student at MIT to translate for him when the latest paper from Dr. Razborov arrives.

Circuit analysis of this sort is not of interest only to theorists. The makers of semiconductors would like to know just how few gates they can get away with using on their chips. If it were proved that $P=NP$ is false, computer scientists would know for sure that there are no fast ways of solving problems such as the travelling salesman. Some people would be happy to hear it. For a long time, so-called "unbreakable" codes were designed by making up codes, giving them to mathematicians, and letting the mathematicians chew on them for a while. It could not break them after concentrated effort, then the code was deemed to be usable. The problem with this approach is that a code might turn out to be crackable after a just a teency bit more effort—say one day after it has been passed as uncrackable. If $P=NP$ are not the same, then there are some problems whose solutions are easy to check but difficult to obtain. Much of modern cryptography—at least the part of it that is publicly known—works on this assumption. Some cryptanalysts would be quite happy to learn that $P=NP$ is false.

There are still some researchers who believe that $P=NP$. Many of them are not taking very seriously because they produce endless numbers of flawed papers that purport to show that $P=NP$. One problem with such papers is their length. Since all the obvious ways of making a last program from NP-complete problems have been tried, any new attempt is going to be truly novel. On the other hand, bad proofs purporting to show that $P=NP$ are different from P are not unknown, either. Dr. David Johnson at AT&T’s Bell Laboratories in New Jersey has a modest (and almost serious) proposal to stem the tide of bad papers. He proposes that anybody who wants their proof published in a reputable journal should post a $1,000 bond. If the proof turned out to be rubbish, they would forfeit the bond. As an added incentive, forfeited money would go into a pot that would be given to the first verified proof.

If $P=NP$ turned out to have no answer, everybody would lose their money. Before the second world war, a Viennese mathematician, Kurt Gödel, and others proved that some questions in mathematics can never be answered. It is possible that $P=NP$ is one of them. Possibly, but inherently unlikely, according to most mathematicians. After all, either there is a program that does subset-sum in polynomial time or there is not. Computer scientists tend to invoke Gödel’s late at night when they are tired and frustrated. The smart money is on NP as a separate class, but nobody expects to have an easy time proving it. Dr. Cook and Dr. Johnson think that the whole field needs an overhaul before the status of NP can be established one way or the other. This is no cause for despair. Computer science is still a young field compared with physics and mathematics. There are ancient unsolved problems in mathematics, such as Fermat’s Last Theorem, which got chipped down piece by piece over the years. P=NP has many more implications than Fermat’s Last Theorem, an unsolved chestnut about polynomials that has taxed mathematicians for over 300 years. Pure mathematicians are being drawn into the field and computer science problems are being solved by using branches of mathematics, such as geometry, which seemed at first unrelated to computer science.

Everyone conceives that it is difficult to prove even the simplest results in computer science. Even proofs that are easy to understand seem extraordinarily hard to think up, and they may prove unexpected things. This summer Dr. Neil Immerman of Yale University settled a question, known as "NP=co-NP?", which is even older though less significant than "P=NP?". A relatively straightforward two-page proof showed that Dr. Immerman’s answer to the question was yes—the opposite of what most computer scientists expected. Many computer scientists were amazed at how easy the proof was. As one graduate student in computer science put it: "a bunch of complexity theorists are all kicking themselves", which sums up the present atmosphere in a curiously tricky field.

Reproduced with permission from The Economist.
THERMOMETER

When we use a mercury thermometer, the most irritating thing is to find the correct angle at which we must hold it, so that we can see the mercury column properly. Fortunately, this frustration is now over. The good old mercury thermometer is now a thing of the past. The electronic thermometer can convert the temperature to an equivalent voltage which can be directly read on the scale of a meter. Another advantage of the electronic thermometer is the range of temperature which can be read with it. The circuit presented here can read temperatures from -20°C up to about 100°C quite accurately.

Temperature Sensors.
There are many types of temperature sensors which can be used to convert the temperature to a voltage signal; either directly or indirectly.

The simplest type of such sensors is the thermistor or temperature dependent resistors. The resistance of a thermistor changes with the temperature. This change in resistance can be converted to a change in voltage if we pass a constant current through the thermistor and measure the voltage across it.

There are two ways in which a thermistor can change its resistance with temperature – either increase with temperature or decrease with increasing temperature. The first type is called PTC-Thermistor, the one with a positive temperature coefficient. The other is the NTC-Thermistor, the one with a negative temperature coefficient. The thermistor is the simplest form of temperature sensor, however, it has a disadvantage of being non-linear. The change in resistance is not directly proportional to change in temperature, and due to this, the calibration of the meter scale becomes a complex task.

To avoid this problem, we have used a silicon diode as the temperature sensor in our circuit of the thermometer. An unwanted feature of the diode has been used here to an advantage. We already know that, when a diode is forward biased, the voltage drop across the junction is about 0.7 Volts. When we are using the diode as a diode, we would desire that this 0.7V remains constant, but in reality it doesn’t. It varies with the ambient temperature. This happens due to the temperature sensitivity of the semiconductor materials. Generally the data specified by the manufacturers is valid at an ambient temperature of 25°C. Thus, the forward voltage drop of a diode is also valid at 25°C, and is about 0.7V. With change in ambient temperature this voltage reduces by about 2mV per degree centigrade rise. This change in voltage is constant over a wide range of temperatures. As the change in voltage is linearly proportional to change in temperature, our scale calibration problem would be totally eliminated. This is a great advantage over the NTC or PTC thermisters.

The graphs for NTC, PTC, thermisters are shown in figure 1 a, and the graph of forward voltage drop across a diode versus temperature is shown in figure 1 b.

The Circuit
The heart of our thermometer circuit is an IC which contains four Op amps. These four Op amps are shown in the circuit of figure 2 as A1 to A4. They have the following functions to perform:

A1 produces a reference voltage. A2 functions as a temperature to voltage converter; A3 works as a differential amplifier and A4 with P3 determines the null point on the measuring scale – which corresponds to 0°C, or the freezing point.

P1 is used for zero adjustment during calibration and P2 is used for calibrating the full scale reading at 100°C.

This gives just a brief idea of the functioning of the circuit. More details will follow in the course of the further discussion.

The thermometer circuit can be powered from a 9V
The thermisters have a disadvantage that they are not linear in nature. The variation in resistance with respect to temperature is shown in figure 1a.

In contrast to this, the semiconductor materials also exhibit a temperature dependence and have an advantage that the variation with temperature is linear. Figure 1b shows the variation in threshold voltage of a forward-biased silicon diode. With increasing ambient temperature, the voltage falls by 2mV/°C.

The circuit draws about 5mA current, and continuous operation on battery will exhaust the batteries too quickly.

Even though the power supply of figure 3 produces an output voltage of 15.6V and the battery gives just 9V, the functioning of the thermistor circuit is not affected because there is a regulator IC (78105) incorporated in the circuit which generates a stable output voltage of 5V at its output terminal. IC1 can accept any voltage between 7V and 20V at its input and generates a constant output voltage level of 5V.

The circuit is some what different from most other circuits we have so far studied in SELEX. The ground line connection is not continuous from the power supply, directly to the output as usual. In this circuit, only five components are directly connected to the power supply ground: IC1, IC2 R2, C1 and R11. The resistors R4, R5, R8, R10 and P3 are all connected with point C, the voltage of which is +2.5V with respect to the powersupply ground.

If we consider the point C...
as the ground for this part of the circuit, the power supply + line become a + 2.5V line, and the power supply ground line becomes a -2.5V line.

This is not the case, however, for IC2 as it is connected directly across the input power supply, which is 9V in case of battery and 15.5V in case of the eliminator. Thus, with respect to C as the ground, the IC2 has a positive supply of either 6.5 or 13, and a negative supply of -2.5V. This comparison is shown in figure 4. Point C is called the virtual ground of the circuit. The sole purpose of shifting the earthing point to the virtual ground is that the IC2 with four Op amps needs a dual power supply. This also enables us to measure the temperatures below zero, up to -20°C. Op amp A1 is responsible for generating this virtual ground reference, with the help of R1/R2 combination. A1 is connected as a voltage follower. A voltage follower is an amplifier with unity gain. Thus the voltage at pin 7 and pin 5 of A1 must be same. This is a fixed at 2.5V by the input voltage divider made by R1/R2. The output of 2.5V from A1 is used as the virtual ground reference.

Figure 3:
Battery eliminator circuit for use with the thermometer, if it is to be continuously operated. Operating continuously with batteries would be less sensible.

Figure 4:
The comparison of voltages referred to the power supply ground, as well as the virtual ground. This shows the importance of shifting the ground reference level.

Figure 5:
Component layout of the thermometer circuit on a 40 x 100 mm SELEX PCB only the power supply, meter and the diode are connected externally. The diode is connected with long flexible wires to act as temperature probe.

Component List
R1, R2 = 10KΩ
R3 = 680Ω
R4, R10 = 2.2 KΩ
R5, R6, R7 = 1 KΩ
R8, R9 = 6.8 KΩ
R11 = 15 KΩ
R12 = 8.2 KΩ or 6.8 KΩ
P 1 = 2.5 KΩ Trimpot
P 1 = 1 KΩ Trimpot
P 1 = 10 KΩ Trimpot
C 1 = 100 µF
D1 = 1N 4148 (Silicon diode)
IC1 = 78L05
IC = 2 LM 324

Other parts:
40 x 100 mm SELEX PCB
14 pin IC socket
100 µA or 100-0:100 mA meter
Power supply/Battery
Casing:
Connecting wires etc.
Op amp A2 works as a temperature to voltage converter. The voltage divider made of R3, P1, R4 decides the input voltage at pin 3 of A2 and is fixed between 3.5V and 4.7V depending on the position of the slider contact of the potentiometer P1 (with reference to the power supply ground). The diode D1 forms the feedback branch of the circuit around A2. This decides the difference between the input voltage on pin 2 and the output voltage on pin 1.

As the voltage input at pin 3 is fixed by the voltage divider, the output of Op amp A2 directly depends on the voltage across diode D1, which in turn depends on the temperature. The 2mV/°C change in the voltage across the diode is very small to drive a moving coil meter and must be amplified. This task is managed by Op amp A3 which operates as an amplifier with a gain of 68. The gain is decided by R9 and R7.

The potentiometer P2 is adjusted in such a manner that a voltage change of 2mV on the inverting input (Pin 13) of A3 causes an increase of 10mV at the output of A3 (Pin 14).

The slider contact of P2 is connected to point A which then feeds the moving coil meter. Point B is connected to the output of Op amp A4, which is more negative than the point C (virtual ground) itself. This ensures that we can measure temperatures even below the freezing point at 0°C.

A multimeter with a 1V DC or 2V DC range can be used in place of the moving coil meter shown in the circuit. If you can have a separate meter for our thermometer, the best suited one will be a 100µA DC meter or a 100-0-100 µA DC meter. R1 will be 8.2kΩ for a 100 µA meter and 6.8kΩ for a 100-0-100 µA meter.

Construction

The complete circuit of the thermometer fits onto a 40 x 100 mm SELEX PCB. The component layout is shown in figure 5. The meter and the power supply, of course, cannot be accommodated on the PCB. The temperature sensor diode D1 will naturally be connected externally with long flexible wires to act as a temperature probe.

As usual the construction begins with soldering all jumper wires, then resistors, trim pots, capacitors and then the ICs. IC1 is a 3 pin device and the pin connections are as shown in figure 2. IC2 should preferably have a socket. Be careful with the Pin 1 marking of the IC2 while inserting it into the IC socket.

The diode is soldered to the flexible connecting wires, with its terminals fully insulated up to the glass body. The diode can be properly insulated using an adhesive which can withstand 100°C.

This will be all the more important when measuring liquid temperatures. A photograph of the assembled board is shown in figure 6.

The meter scale will have to be marked with temperature values. This has been shown in figure 7, for a 0-100 µA meter. Figure 8 shows a scale suitable for a 100-0-100 µA meter. If you can obtain a meter which has the dial of this size, the printed scale of figures 7 or 8 can be cut out and directly pasted on the dial.

A 0-100 µA meter will be connected across terminals A and B of the circuit diagram in figure 2. A meter with 100-0-100 µA
movement must be connected across terminals A and C. In this case, op amp A4 is not used. Also, resistor R11 and trim pot P3 is superfluous in this case.

In both the cases, the +ve terminal of the meter must be connected to terminal A of the thermometer circuit.

Calibration

If a 0-100 uA meter is used, all three trimpots P1, P2, P3 are required for calibration. In this case the needle of the instrument has its rest position at the leftmost end of the scale, which corresponds to -20°C. To adjust the 0°C reading, the meter is first connected between B and C. (+ve terminal of meter should be on C.) The trimpot P3 is now adjusted so that the needle comes to 0°C reading. The meter is now connected across terminals A and B, and the temperature probe immersed in the freezing point mixture. The needle may not show 0°C at first, which should be adjusted by trimpot P1 to indicate exactly 0°C. This completes the 0°C calibration. The upper end calibration at 100°C, can be done using boiling water and adjusting the reading to 100°C by trimpot P2. If a good calibrated reference thermometer is available, the upper end calibration can be done at temperatures lower than 100°C also.

In case a meter with 100-0-100 uA movement is used, the calibration is a bit simpler. The meter is connected between A and C. 0°C calibration is done with ice water using trimpot P1 and 100°C calibration is done with boiling water, using trimpot P2. Trimpot P3 is not in the picture at all.

The thermometer can be housed in a small enclosure as shown in the photograph at the beginning of this article.

Figure 7: A suitable scale for the thermometer, when a 0-100 uA meter movement is used.

Figure 8: A suitable scale for 100-0-100 uA meter movement for the thermometer.
DIGITAL PANEL METER
THE PDS 200 Series 3½ digit panel meters give mounting options in dual panel cut-out of 91 x 40 mm and 69 x 28 mm for front or rear mounting, respectively. It gives zero and true polarity for null indications. The instrument is housed in acrylic casing for use in portable instruments, and in metal enclosures for electrically noisy environments. Operating on 5 VDC supply, it is available in basic ranges of 200 mV and 2 VDC and in converted ranges from 20 V to 1,000 VDC, 2 µA to 2,000 A DC, and 200 ohms to 2 megohms.

For further information please contact:
SUNTEJ ENGINEERING PVT. LTD.
2/4 Oak-Lane,
Commonwealth Bldg.,
3rd floor, Bombay 400 023

PLA REED RELAY
PLA series DIP reed relays are now available with true 1C/0 and 2C/0 contacts; besides 1N/0 and 2N/0 contacts. Ideally suitable for mounting on standard Dual-In-Line IC sockets, Pi series DIP reed relays are available with various coil voltages with contacts capable of switching 10W VA at 0.5 amps and 100V Max. Salient features also include high speed switching and excellent input to output isolation characteristics.

For further information please contact:
M/S. ACCORD ELECTRONICS
201, Yashodham Enclave
SA-1/56, Goregaon Mulund Link Road, Goregaon (East)
Bombay 400 063

ADHESIVE FOR ELECTRONIC INDUSTRY
Cyanobond MP-1200 a cyanoacrylate Super Speed, single component quick-setting low viscous, solventless adhesive, can fix things together within seconds. Due to quick setting property it increases the rate of production and no clamping is required as only thumb pressure for few seconds is sufficient for bonding two substrates, rubber, Plastics, Metals, Glases, Ceramics, Wood etc. It has high tensile shear Strength. It is useful for fixing capacitors on P.C.B.’s Labels/Logos can be fixed without rivets and screws. It is non-conductive type and works as an insulator.

For further information please contact:
M/S. SAI ELECTRONICS
(A Div. of Starch & Allied Industries)
Thakor Estate, Kurla Kiral Road, Vidyanagar (West)
Bombay 400 086
Phone: 5131219/5136601

NUMERIC PRINTER
ACCORD’s PRT 8421 interface printer allows translation of data into hardcopy records. It is specially designed to accept a wide range of standard inputs right from industrial standard data transmission signals of 0-20mA/4-20mA through serial/parallel/multiplexed/BCD or binary to ASCII coded current loops. The PRT 8421 can do even more by performing data transfer checks between display and printer and allows expansibility by means of retransmission. Print initiation is on demand, on control closure or on completion or user defined

For further information please contact:
POPULAR DIGITRONICS & SONICS
B-27, Ganesh Prasad
10 Naushir Bhanucha Road
Bombay-400 007
Phone: 898007

PID CONTROLLER
JELTRON’s model 811A single loop PID controller is based on microprocessor technology. It is designed to accept direct mA, mV or volt inputs or those from thermocouples, RTDs and other specialised sensors. Cold junction compensation and the single linearisation are built-in. Look-up tables for linearisation of signals from specialised sensors can be specified by the user. The conditioned input signal is available for retransmission after isolation. The output can be a 4-20 mA current loop or 0-5/0-10 V. Indication is provided for a deviation and an absolute alarm. The 811A comes with an integrated Auto/Manual station with bumpless transfer from the Manual to Auto. Apart from the PID constants, the Rate of Approach constant provides for Anti Reset Wind-up. The 811A has provision for a serial RS 232 or RS 422 interface. Using this data highway multiple controllers can be connected to one host computer in the control room. The host computer can not only interrogate the parameters measured and programmed but can also remotely tune the controller as well as change the setpoints. While the entire network can be centrally controlled from just one terminal, the controllers maintain single loop integrity and do not depend on the host for their individual operation.

For further information please contact:
JELTRON INSTRUMENTS (II) PVT. LTD.
63-190/2, Rd. No.1
Banjara Hills
Hyderabad 500 004
MOSFET ARRAYS
The SGS type L6100, monolithic array of four MOSFET transistors, manufactured using SGS' Multipower-BCD 100 technology and assembled in DIP and Multiwatt packages.

uniformity and distribution of light measurement in space, spectral radiometry measurements, fiber optics power measurements, laser power and general purpose power measurements, CRT Luminance measurements, ultraviolet power measurements, etc.

PLA - DMM
PLA Electro Appliances Pvt. Ltd., have added one more economical Multimeter Model DM-14A1 to their present range of DM-14 Series DMMS. This Multimeter is fully protected on voltage, current and resistance ranges against wrong selection of ranges as well as for overloading.

speed overshooting so it reduces operational mechanical stresses in a process.
It is available in compact standard model size 230 x 160 x 75 mm upto 5 H.P. ex-stock & Desk panel type for higher range.

DPM
PUNEET Digital Panel Meters are made in standard DIN size of 96 x 96mm and in the open card Type. The unit operates on Mains or +5VDC and measures upto 2000V and 2000A. DPM’s with special readouts can also be made against specific enquiries.

D.C. DRIVE SYSTEMS
Spradcom Electro Controls offers a range of solid state Thyristor Control D.C. Drive systems for use in material handling, chemical, cement, sugar, textiles, paper & steel process industries which require variable speed with constant torque.

The system consists of continuous firing SCR circuitry to provide non linear adjustable IR compensation, field failure protection, linear acceleration and wide constant torque range. It also incorporates protection cum buzzer alarm against over loading conditions.

The drive system has provision to eliminate pulsating start &

OPTOMETER
UNITED DETECTOR TECHNOLOGY, USA, has introduced S390 Multi-Channel Optometer enabling the user to conduct simultaneous measurements of multiple light sources. It is available in four and eight channels.
The system is equivalent in function to multiple optometers, linked via microprocessor control, housed within a highly compact, rack-mount package. It has limitless calibration capability, as each channel can be programmed independently of another. And with its large vacuum fluorescent display, operation is very straightforward.
The S390 can be remotely computer controlled, both for sending and receiving information, via its built-in IEEE-488 interface.
The System can be used for signal uniformity tests on 8-channel fiber optic cables, quality control applications in laser manufacturing,

For further information please contact:
M/s. SGS SEMICONDUCTOR (PTE) LTD.
28 Ang Kio Industrial Park 2, Singapore-2056

For further information please contact:
M/s. TOSHI-TEK INTERNATIONAL
267 Kilpauk Garden Road
Madras-600 010

For further information please contact:
M/s. PLA ELECTRO APPLIANCES PVT. LTD.
146, Bhajan Industrial Estate
Chakala, Andheri (E)
Bombay 400 099

For further information please contact:
PUNEET INDUSTRIES
H-230, Ansa Industrial Estate
Saki-Vihar Road
Bombay-400 072

For further information please contact:
SAMS SEMICONDUCTOR
(PTE) LTD.
28 Ang Kio Industrial Park 2, Singapore-2056

For further information please contact:
M/s. SPRADECOM ELECTRO CONTROLS
40, Bhajan Industrial Estate
Chakala, Andheri (E)
Bombay 400 099

POWER SWITCH
The SGSF463 FASTSWITCH transistor, designed and produced by SGS, can operate at frequencies above 100 KHZ in cascode configuration and offers exceptional RBSOA performance. SGS produce over 50 types of FASTSWITCH Transistor for switching power supply designs with power outputs from 20 to 1800 watts.
IMPULSE SENDER
ANDO ELECTRIC CO of Japan offers the TSD-31, a portable equipment weighing less than 6Kgs, which can be used in the performance testing of telephone sets, telephone exchanges and other telephone circuits. The instrument can be transmit impulses with required speed and make ratio and can measure the speed and make ratio of externally applied impulses. As it can handle both these tasks simultaneously, it can transmit pulses of required speed and make ratio in the telephone exchange or circuits and the output can be looped back into TSD-31 for measurements. End to end measurements can be made with two TSD-31 equipment. The impulses can be generated continuously or any number of pulses from 1 to 10 can be generated. The maximum speed is 39 pulses/sec and can be set by means of thumbwheel switch and the accuracy of the pulses are ensured by the built in crystal oscillator. The make ratio can be adjusted from 1% to 99% in 1% steps and can be set with a thumb wheel switch. The external measuring section can be measured and display digitally the speed of the pulses up to 39pS and make ratio from 1% to 99%. The TSD-31 can handle input signal of 0 to -48V or 0 to +48V. It measures input signal with chatter of up to 3ms.

For further information please contact:
MURUGAPPA ELECTRONICS LTD.

Agency Division
3rd Floor, Parry House
43 Moore Street
Madras 600 001
Phone 21003, 27531, 21019.

MOTOR DRIVER
The SGS type L6230, a single-chip controller/driver for brushless DC motors. This intelligent power device delivers up to 3A output current and incorporates a three-state output stage design to reduce dissipation.

For further information please contact:
M/s. A.T.E. PVT. LTD.
(Electronic Equipment Division)
43 Dr. V.B. Gandhi Marg,
Fort Bombay 400 023
Phone: 244771
Telegrams: 'CORATEX'
Telex: 11-2118 ATE IN

These equipments are available with three digit display of frequency or with 4 digit display of frequency and they offer an accuracy and a resolution of ± 0.1 Hz and ± 0.01 Hz respectively.

For further information please contact:
M/s. CHOWDHRY INSTRUMENTATION PVT. LTD.
110, Model Basti
New Delhi-110 006
Phone: 774642 & 774178

DIGITAL LINE FREQUENCY INDICATORS
'CHOWDHRY' Digital line frequency indicators are new generations & much superior to the conventional reed type of pointer type frequency indicators. These equipment find extensive applications in generating stations, power plants, lead dispatch centres, generator sets, local control panels, motor control centres etc.

For further information please contact:
MURUGAPPA ELECTRONICS LTD.
Agency Division, Parry House
3rd Floor, 43 Moore Street
Madras 600 001
Phones: 27531, 21019, 21003

AMPERE HOUR METER
The Ampere Hour Meter developed by Erhardt & Leimer (India) Ltd. is an instrument to control the electroforming process by measuring the Ampere Hours or Ampere Minutes. The unit’s input is from any DC shunt up to 100 mV and it automatically shuts off the plating process after the pre-set value is reached. In case of power failure, the battery back-up stores the accumulated value in memory and after power resumption, the exact pre-set value can be achieved without re-setting the load.

YOEKE COIL WINDER
Model 151 is a mechanically controlled vertical deflection yoke coil winding machine. Model 151 is suited for mass production of a particular type of yoke coils. Given the winding specifications, the machine will be designed to meet your specifications. The layer winding is achieved by the rod, roller and can mechanism and the accurate pitch for each layer is controlled by the change gears. The machine is provided with suitable core chucks to hold the yoke rings and the flyer rotates around to do the winding while the core chucks angles through 180 degrees to give the curvature movement. There is also a provision for winding minimum no. of turns on the return ensuring high quality coils.

The machine can wind simultaneously two half rings, the bobbin support devices for the same is provided as a standard accessory with the machine.

For further information please contact:
MURUGAPPA ELECTRONICS LTD.
Agency Division, Parry House
3rd Floor, 43 Moore Street
Madras 600 001
Phones: 27531, 21019, 21003
MINIATURE PORTABLE INSTRUMENTS

Miniature Portable Instruments, for use in Laboratories, Industrial Technical Institutes, Engg. Colleges, Workshops and also for field use. Available in Moving Iron Type for AC and Moving Coil type for DC, with ranges 10V to 600V AC 05 amps to 15 amps AC and 50mV to 30A DC 50mV to 300V DC., Accuracy class 1, Size 113 x 108 x 48mm.

brought out in front of the indicating meters. The scalelength of the instruments are 50mm, 65mm and 85mm respectively. They are available in Moving Coil DC type and Moving Coil AC Rectifier type. Moving Coil DC Pannel meters can be supplied with dual range also.

For further information please contact:
MECO INSTRUMENTS PVT. LTD.
Bharat Industrial Estate
T.J. Road, Sewri
Bombay 400 015.

STROKE COUNTER

M/s. CE Industries introduces 5 digits Stroke Counter Model No.CS030 with large display to assure accurate reading even in a limited space. It has a knob reset facility to bring all the figures to zero. No lubrication required as all the moving parts are made of self lubricating material. This unit is designed to directly replace the “TOGOSHI” Counter.

For further information please contact:
AUTOMATIC ELECTRIC LIMITED
Rectifier House, Wadala
P.O. Box No.7103
Bombay 400 031
Phone 4129330
Telex: 11-71546

For further details please contact:
MECO INSTRUMENTS PVT. LTD.
Bharat Industrial Estate
T.J. Road, Sewri
Bombay 400 015.

4115 high density thick film capacitor dielectrics. When used with ESL #9638 electrodes, these dielectrics exhibit a 30% increase in dielectric constant. For example, the dielectric constant (K) of ESL # 4113 is nominally 130, with 9638 electrodes the K=170.

Solderability of ESL #9638 is very good with ESL # 3701 (62Sn/36Pb/2Ag) solder paste.

For further information please contact:
APPLIED ELECTRONICS LTD.
A-5/6 Wagle Industrial Estate
Thane 400 604

LED DISPLAYS

Led Displays, Seven Segment for numerical measurements, Available in 0.9” (12.7mm) size with Red/Green illumination in both common anode and cathode type, for use in Control Panels, Instrumentation, Moving Display, Digital Panel Meters etc.

For further details please contact:
AUTOMATIC ELECTRIC LIMITED
Rectifier House, Wadala
P.O. Box No.7103
Bombay 400 031
Phone 4129330
Telex: 11-71546

DESKTOP TYPE METERS

MECO has introduced a series of Educational Desk type Meters in three different sizes for use in laboratories of Educational Institutions. Indicating instruments are available in round type, square type or rectangular types housed in an inclined ABS stand of size 100 x 115 x 92mm with terminals

For further information please contact:
M/s. SAI Electronics (A Divn. of Starch & Allied Industries), Thakor Estate, Kurla Kiran Road, Vidya Vihar (West) Bombay 400 086
Phone 5131219/5136601
Telex: 011-72132 PLA IN

THICK FILM DIELECTRIC

THE new ESL #9638 Palladium-Silver conductor is specifically designed for use with ESL # 4113, 4114 and logger to print the required data automatically at programmed intervals. A 16 column Alphanumeric Dot Matrix Printer is deployed for the logging of data, entered parameters, present status of the unit and the Self Test Results. A 12 character 16 segment alphanumeric local display is used to simplify the data entry by simple English messages. Over and above it covers almost all the standard features of Standard Temperature Scanners.

For further information please contact:
APPLIED ELECTRONICS LTD.
A-5/6 Wagle Industrial Estate
Thane 400 604

DATA LOGGER/ CONTROLLER

The 9640 is a multichannel Data Logger & Controller with real-time clock; and battery back-up for the system data memory. It has an optional facility to interface digital input signals and a special extensive mathematical capabilities to handle the Engineering parameter sensors. The in-built crystal controlled Realtime clock helps the
CORRECTIONS

Stream encryption
October 1987 p. 10.28

Equations (24), (28) and (27) should be amended as follows:

\[K' = (K + 4K) + 1 + (K + 3K + 2 + K) \mod 2 \]
\[X = (AX + 1 + B) \mod M \] \[(26) \]
\[K = X \mod 2 \] \[(27) \]

The number sequence and the binary sequence in the section \(X \mod P \) generator should be modified to read:

\[X = X' \mod \Pi \] and
\[K = X' \mod 2 \] respectively.

Digital sine-wave generator
March 1987 p. 3.21

When the unit is fed from a supply voltage lower than -10 V, as suggested in the article, it is recommended to change \(R1 \) from 2k2 to 3k9, and \(R11 \) from 3k9 to 6k2.

Active phase-linear cross-over network
October 1987 p. 10.48

The parts list should be modified to read:

\(T1; T2 = 80130. \)
WITH 10 YEARS EXPERIENCE
VISHA ASSURES
TOP QUALITY AT GOOD PRICES

Disc Preamps
Preamplifiers
Tone Controls
Power Amplifiers
Audio Accessories
Sound Effects
Door Bells
Light Effects
Timers/Clocks
Lab Instruments
Domestic Projects
Power Supplies

For A Full Range Of Top Quality Components

- Accent Electronic Switches
- Inductive Proximity, Magnetic Proximity, Level Switch, Inst Switch, & Photo Electric Switch
- Bread Boards
- Capacitors
- Computerised Moving Message Display
- Crystals
- CRC Acryform for PCB conformal Coating
- Connectors
- Drafting Aids
- Desoldering Pumps
- General purpose PCBs
- Heatsinks
- IC’s Linear, TTL, CMOS & Microprocessors
- IC sockets & ZIF sockets
- ION Buzzers
- ION Audio Clock Modules
- IEC & Calonix Switches
- Infra Red LED’s
- Inductors
- JOINT Solder Wire
- LDR’s
- LED’s & Displays
- Opto Isolators
- Photo Diodes
- Potentiometers
- Presets
- Resistors
- Ribbon Cables
- Relays
- Rectifiers Duman Pla, Delta, D3EN
- Solder Soldering Iron & Soldering Iron Stand
- Transistors
- Transformers
- Thyristors,Triacs,SCRs
- Terminals
- Transducers

VISHA ELECTRONICS

ONE STOP COMPONENTS SHOP
17, Kalapana Building First Floor 349, Lamington Road
Bombay - 400 007. Tele: 362850
Black magic

Nakamichi AX-1000

Featuring SMPS, a unique advance in audio technology, coming to India for the first time.

Vibrating with 250 watts of peak energy, breaking all sound barriers, touching rare heights, here comes, at last, an Ampil Deck marvel which will fill your senses as never never before.

This classic black model—Nakamichi AX-1000 with its unique Switch Mode Power Supply (S.M.P.S.)—has music surging through its sophisticated circuitry, with such sonic purity and clarity, that one hears not the reproduction of music, but the actual recreation of it.

Backed by the audio expertise of Cosmic, this latest generation model has a dynamic one touch recording system, a super hard perm alloy head, soft touch controls, L.E.D. peak level indicators, double gap erase head plus much much more for overall excellent performance. This powerful Ampil Cassette Deck has arrived, to cast a spell, even on the perfectionist. So get ready for some hypnotism.

Cosmic Nakamichi AX-1000 It's pure black magic

We are sound

Printed & Publisher — C.R. Chandradas, 2, Koumar, 14th A Road, Khar, Bombay 400 052.
Printed at Trupti Offset, 103 Vasan Udyog Bhavan, Tulsi Pipe Road, Lower Parel, Bombay 400 013.